Algorithmic self-assembly of DNA Sierpinski triangles

Algorithms and information, fundamental to technological and biological organization, are also an essential aspect of many elementary physical phenomena, such as molecular self-assembly. Here we report the molecular realization, using two-dimensional self-assembly of DNA tiles, of a cellular automat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS biology 2004-12, Vol.2 (12), p.e424-e424
Hauptverfasser: Rothemund, Paul W K, Papadakis, Nick, Winfree, Erik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e424
container_issue 12
container_start_page e424
container_title PLoS biology
container_volume 2
creator Rothemund, Paul W K
Papadakis, Nick
Winfree, Erik
description Algorithms and information, fundamental to technological and biological organization, are also an essential aspect of many elementary physical phenomena, such as molecular self-assembly. Here we report the molecular realization, using two-dimensional self-assembly of DNA tiles, of a cellular automaton whose update rule computes the binary function XOR and thus fabricates a fractal pattern--a Sierpinski triangle--as it grows. To achieve this, abstract tiles were translated into DNA tiles based on double-crossover motifs. Serving as input for the computation, long single-stranded DNA molecules were used to nucleate growth of tiles into algorithmic crystals. For both of two independent molecular realizations, atomic force microscopy revealed recognizable Sierpinski triangles containing 100-200 correct tiles. Error rates during assembly appear to range from 1% to 10%. Although imperfect, the growth of Sierpinski triangles demonstrates all the necessary mechanisms for the molecular implementation of arbitrary cellular automata. This shows that engineered DNA self-assembly can be treated as a Turing-universal biomolecular system, capable of implementing any desired algorithm for computation or construction tasks.
doi_str_mv 10.1371/journal.pbio.0020424
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1291078689</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_636fb46734ae4c44bb08248b083e93f1</doaj_id><sourcerecordid>17543074</sourcerecordid><originalsourceid>FETCH-LOGICAL-c620t-2d8b02b3dc3ac463fe38c5f52a40c05ebebdd92776246c48974b6a2fc5e40dbe3</originalsourceid><addsrcrecordid>eNqFkktv1DAUhSMEoqXwDxBEqsQugx_XjyxYjMqrUgULYG3Zzs3UgxMPdgap_54ME6BFSKxs2d85Ptc6VfWUkhXlir7cpn0ebVztXEgrQhgBBveqUypANEprcf_W_qR6VMp2hljL9MPqhAqhZw9xWol13KQcpush-Lpg7BtbCg4u3tSpr19_WNefAuZdGMvXUE852HETsTyuHvQ2FnyyrGfVl7dvPl-8b64-vru8WF81XjIyNazTjjDHO8-tB8l75NqLXjALxBOBDl3XtUwpyUB60K0CJy3rvUAgnUN-Vj0_-u5iKmaZuBjKWkqUlrqdicsj0SW7NbscBptvTLLB_DxIeWNsnoKPaCSXvQOpOFgED-Ac0QzmhJpjy3s6e71aXtu7ATuP45RtvGN692YM12aTvhvBQZNDlheLPqdveyyTGULxGKMdMe2LkYoqACL_C1IlgBMFM3j-F_jvP4Aj5XMqJWP_OzIl5tCVXypz6IpZujLLnt0e949oKQf_AWWLvD4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1291078689</pqid></control><display><type>article</type><title>Algorithmic self-assembly of DNA Sierpinski triangles</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>Rothemund, Paul W K ; Papadakis, Nick ; Winfree, Erik</creator><contributor>Anne Condon</contributor><creatorcontrib>Rothemund, Paul W K ; Papadakis, Nick ; Winfree, Erik ; Anne Condon</creatorcontrib><description>Algorithms and information, fundamental to technological and biological organization, are also an essential aspect of many elementary physical phenomena, such as molecular self-assembly. Here we report the molecular realization, using two-dimensional self-assembly of DNA tiles, of a cellular automaton whose update rule computes the binary function XOR and thus fabricates a fractal pattern--a Sierpinski triangle--as it grows. To achieve this, abstract tiles were translated into DNA tiles based on double-crossover motifs. Serving as input for the computation, long single-stranded DNA molecules were used to nucleate growth of tiles into algorithmic crystals. For both of two independent molecular realizations, atomic force microscopy revealed recognizable Sierpinski triangles containing 100-200 correct tiles. Error rates during assembly appear to range from 1% to 10%. Although imperfect, the growth of Sierpinski triangles demonstrates all the necessary mechanisms for the molecular implementation of arbitrary cellular automata. This shows that engineered DNA self-assembly can be treated as a Turing-universal biomolecular system, capable of implementing any desired algorithm for computation or construction tasks.</description><identifier>ISSN: 1545-7885</identifier><identifier>ISSN: 1544-9173</identifier><identifier>EISSN: 1545-7885</identifier><identifier>DOI: 10.1371/journal.pbio.0020424</identifier><identifier>PMID: 15583715</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Atoms &amp; subatomic particles ; Base Sequence ; Bioengineering ; Bioinformatics/Computational Biology ; Biophysics - methods ; Computational Biology - methods ; Computer Simulation ; Computers, Molecular ; Crystals ; DNA - chemistry ; Experiments ; Fractals ; Genetic Engineering ; In Vitro ; Microscopy, Atomic Force ; Models, Genetic ; Programming languages ; Reproducibility of Results ; Sequence Analysis, DNA ; Ultraviolet Rays</subject><ispartof>PLoS biology, 2004-12, Vol.2 (12), p.e424-e424</ispartof><rights>2004 Rothemund et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Citation: Rothemund PWK, Papadakis N, Winfree E (2004) Algorithmic Self-Assembly of DNA Sierpinski Triangles. PLoS Biol 2(12): e424. doi:10.1371/journal.pbio.0020424</rights><rights>Copyright: © 2004 Rothemund et al. 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c620t-2d8b02b3dc3ac463fe38c5f52a40c05ebebdd92776246c48974b6a2fc5e40dbe3</citedby><cites>FETCH-LOGICAL-c620t-2d8b02b3dc3ac463fe38c5f52a40c05ebebdd92776246c48974b6a2fc5e40dbe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC534809/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC534809/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15583715$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Anne Condon</contributor><creatorcontrib>Rothemund, Paul W K</creatorcontrib><creatorcontrib>Papadakis, Nick</creatorcontrib><creatorcontrib>Winfree, Erik</creatorcontrib><title>Algorithmic self-assembly of DNA Sierpinski triangles</title><title>PLoS biology</title><addtitle>PLoS Biol</addtitle><description>Algorithms and information, fundamental to technological and biological organization, are also an essential aspect of many elementary physical phenomena, such as molecular self-assembly. Here we report the molecular realization, using two-dimensional self-assembly of DNA tiles, of a cellular automaton whose update rule computes the binary function XOR and thus fabricates a fractal pattern--a Sierpinski triangle--as it grows. To achieve this, abstract tiles were translated into DNA tiles based on double-crossover motifs. Serving as input for the computation, long single-stranded DNA molecules were used to nucleate growth of tiles into algorithmic crystals. For both of two independent molecular realizations, atomic force microscopy revealed recognizable Sierpinski triangles containing 100-200 correct tiles. Error rates during assembly appear to range from 1% to 10%. Although imperfect, the growth of Sierpinski triangles demonstrates all the necessary mechanisms for the molecular implementation of arbitrary cellular automata. This shows that engineered DNA self-assembly can be treated as a Turing-universal biomolecular system, capable of implementing any desired algorithm for computation or construction tasks.</description><subject>Algorithms</subject><subject>Atoms &amp; subatomic particles</subject><subject>Base Sequence</subject><subject>Bioengineering</subject><subject>Bioinformatics/Computational Biology</subject><subject>Biophysics - methods</subject><subject>Computational Biology - methods</subject><subject>Computer Simulation</subject><subject>Computers, Molecular</subject><subject>Crystals</subject><subject>DNA - chemistry</subject><subject>Experiments</subject><subject>Fractals</subject><subject>Genetic Engineering</subject><subject>In Vitro</subject><subject>Microscopy, Atomic Force</subject><subject>Models, Genetic</subject><subject>Programming languages</subject><subject>Reproducibility of Results</subject><subject>Sequence Analysis, DNA</subject><subject>Ultraviolet Rays</subject><issn>1545-7885</issn><issn>1544-9173</issn><issn>1545-7885</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqFkktv1DAUhSMEoqXwDxBEqsQugx_XjyxYjMqrUgULYG3Zzs3UgxMPdgap_54ME6BFSKxs2d85Ptc6VfWUkhXlir7cpn0ebVztXEgrQhgBBveqUypANEprcf_W_qR6VMp2hljL9MPqhAqhZw9xWol13KQcpush-Lpg7BtbCg4u3tSpr19_WNefAuZdGMvXUE852HETsTyuHvQ2FnyyrGfVl7dvPl-8b64-vru8WF81XjIyNazTjjDHO8-tB8l75NqLXjALxBOBDl3XtUwpyUB60K0CJy3rvUAgnUN-Vj0_-u5iKmaZuBjKWkqUlrqdicsj0SW7NbscBptvTLLB_DxIeWNsnoKPaCSXvQOpOFgED-Ac0QzmhJpjy3s6e71aXtu7ATuP45RtvGN692YM12aTvhvBQZNDlheLPqdveyyTGULxGKMdMe2LkYoqACL_C1IlgBMFM3j-F_jvP4Aj5XMqJWP_OzIl5tCVXypz6IpZujLLnt0e949oKQf_AWWLvD4</recordid><startdate>20041201</startdate><enddate>20041201</enddate><creator>Rothemund, Paul W K</creator><creator>Papadakis, Nick</creator><creator>Winfree, Erik</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><scope>CZG</scope></search><sort><creationdate>20041201</creationdate><title>Algorithmic self-assembly of DNA Sierpinski triangles</title><author>Rothemund, Paul W K ; Papadakis, Nick ; Winfree, Erik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c620t-2d8b02b3dc3ac463fe38c5f52a40c05ebebdd92776246c48974b6a2fc5e40dbe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithms</topic><topic>Atoms &amp; subatomic particles</topic><topic>Base Sequence</topic><topic>Bioengineering</topic><topic>Bioinformatics/Computational Biology</topic><topic>Biophysics - methods</topic><topic>Computational Biology - methods</topic><topic>Computer Simulation</topic><topic>Computers, Molecular</topic><topic>Crystals</topic><topic>DNA - chemistry</topic><topic>Experiments</topic><topic>Fractals</topic><topic>Genetic Engineering</topic><topic>In Vitro</topic><topic>Microscopy, Atomic Force</topic><topic>Models, Genetic</topic><topic>Programming languages</topic><topic>Reproducibility of Results</topic><topic>Sequence Analysis, DNA</topic><topic>Ultraviolet Rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rothemund, Paul W K</creatorcontrib><creatorcontrib>Papadakis, Nick</creatorcontrib><creatorcontrib>Winfree, Erik</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>PLoS Biology</collection><jtitle>PLoS biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rothemund, Paul W K</au><au>Papadakis, Nick</au><au>Winfree, Erik</au><au>Anne Condon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Algorithmic self-assembly of DNA Sierpinski triangles</atitle><jtitle>PLoS biology</jtitle><addtitle>PLoS Biol</addtitle><date>2004-12-01</date><risdate>2004</risdate><volume>2</volume><issue>12</issue><spage>e424</spage><epage>e424</epage><pages>e424-e424</pages><issn>1545-7885</issn><issn>1544-9173</issn><eissn>1545-7885</eissn><abstract>Algorithms and information, fundamental to technological and biological organization, are also an essential aspect of many elementary physical phenomena, such as molecular self-assembly. Here we report the molecular realization, using two-dimensional self-assembly of DNA tiles, of a cellular automaton whose update rule computes the binary function XOR and thus fabricates a fractal pattern--a Sierpinski triangle--as it grows. To achieve this, abstract tiles were translated into DNA tiles based on double-crossover motifs. Serving as input for the computation, long single-stranded DNA molecules were used to nucleate growth of tiles into algorithmic crystals. For both of two independent molecular realizations, atomic force microscopy revealed recognizable Sierpinski triangles containing 100-200 correct tiles. Error rates during assembly appear to range from 1% to 10%. Although imperfect, the growth of Sierpinski triangles demonstrates all the necessary mechanisms for the molecular implementation of arbitrary cellular automata. This shows that engineered DNA self-assembly can be treated as a Turing-universal biomolecular system, capable of implementing any desired algorithm for computation or construction tasks.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>15583715</pmid><doi>10.1371/journal.pbio.0020424</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1545-7885
ispartof PLoS biology, 2004-12, Vol.2 (12), p.e424-e424
issn 1545-7885
1544-9173
1545-7885
language eng
recordid cdi_plos_journals_1291078689
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Public Library of Science (PLoS)
subjects Algorithms
Atoms & subatomic particles
Base Sequence
Bioengineering
Bioinformatics/Computational Biology
Biophysics - methods
Computational Biology - methods
Computer Simulation
Computers, Molecular
Crystals
DNA - chemistry
Experiments
Fractals
Genetic Engineering
In Vitro
Microscopy, Atomic Force
Models, Genetic
Programming languages
Reproducibility of Results
Sequence Analysis, DNA
Ultraviolet Rays
title Algorithmic self-assembly of DNA Sierpinski triangles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T20%3A38%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Algorithmic%20self-assembly%20of%20DNA%20Sierpinski%20triangles&rft.jtitle=PLoS%20biology&rft.au=Rothemund,%20Paul%20W%20K&rft.date=2004-12-01&rft.volume=2&rft.issue=12&rft.spage=e424&rft.epage=e424&rft.pages=e424-e424&rft.issn=1545-7885&rft.eissn=1545-7885&rft_id=info:doi/10.1371/journal.pbio.0020424&rft_dat=%3Cproquest_plos_%3E17543074%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1291078689&rft_id=info:pmid/15583715&rft_doaj_id=oai_doaj_org_article_636fb46734ae4c44bb08248b083e93f1&rfr_iscdi=true