Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure
Three-dimensional (3D) structural information on many length scales is of central importance in biological research. Excellent methods exist to obtain structures of molecules at atomic, organelles at electron microscopic, and tissue at light-microscopic resolution. A gap exists, however, when 3D tis...
Gespeichert in:
Veröffentlicht in: | PLoS biology 2004-11, Vol.2 (11), p.e329-e329 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e329 |
---|---|
container_issue | 11 |
container_start_page | e329 |
container_title | PLoS biology |
container_volume | 2 |
creator | Denk, Winfried Horstmann, Heinz |
description | Three-dimensional (3D) structural information on many length scales is of central importance in biological research. Excellent methods exist to obtain structures of molecules at atomic, organelles at electron microscopic, and tissue at light-microscopic resolution. A gap exists, however, when 3D tissue structure needs to be reconstructed over hundreds of micrometers with a resolution sufficient to follow the thinnest cellular processes and to identify small organelles such as synaptic vesicles. Such 3D data are, however, essential to understand cellular networks that, particularly in the nervous system, need to be completely reconstructed throughout a substantial spatial volume. Here we demonstrate that datasets meeting these requirements can be obtained by automated block-face imaging combined with serial sectioning inside the chamber of a scanning electron microscope. Backscattering contrast is used to visualize the heavy-metal staining of tissue prepared using techniques that are routine for transmission electron microscopy. Low-vacuum (20-60 Pa H(2)O) conditions prevent charging of the uncoated block face. The resolution is sufficient to trace even the thinnest axons and to identify synapses. Stacks of several hundred sections, 50-70 nm thick, have been obtained at a lateral position jitter of typically under 10 nm. This opens the possibility of automatically obtaining the electron-microscope-level 3D datasets needed to completely reconstruct the connectivity of neuronal circuits. |
doi_str_mv | 10.1371/journal.pbio.0020329 |
format | Article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1291077377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_6de20399553f413fb65fd6529fef8868</doaj_id><sourcerecordid>67088999</sourcerecordid><originalsourceid>FETCH-LOGICAL-c620t-2c745c68b80e27d5b44a5f3c234526fe814763023fbd5bb2442d8335fb458c013</originalsourceid><addsrcrecordid>eNqFkk2LFDEQhhtR3HX0H4g2CN56zGcnffAgix8LCx7Uc0inK7MZ08mYpIX992acVndFEAIJqeetqlTepnmK0RZTgV_t45KC9tvD6OIWIYIoGe4155gz3gkp-f1b57PmUc77CpGByIfNGeYcM4HQeTN9guS0b0cfzdfOagNtNjoEF3YteDAlxdDOzqSYTTzctCW2CUwMuaTFlLZcJ4BucjOE7GJtpy0u5wXaoEM8MUuCx80Dq32GJ-u-ab68e_v54kN39fH95cWbq870BJWOGMG46eUoERAx8ZExzS01hDJOeguy9txTRKgda3AkjJFJUsrtyLg0CNNN8_yU9-BjVuuAssJkwEgIWtemuTwRU9R7dUhu1ulGRe3Uz4uYdkqn4owH1U9QZzoMnFPLcK3Zczv1nAwWrJS9rLler9WWcYbJQChJ-ztJ70aCu1a7-F1xwohAVf9y1af4bYFc1OyyAe91gLhk1Qsk5TAM_wWxoIwhRCv44i_w3zNgJ-r4qTmB_d0yRuporV8qdbSWWq1VZc9uP_ePaPUS_QEYlc4D</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1291077377</pqid></control><display><type>article</type><title>Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><creator>Denk, Winfried ; Horstmann, Heinz</creator><contributor>Kristen M. Harris</contributor><creatorcontrib>Denk, Winfried ; Horstmann, Heinz ; Kristen M. Harris</creatorcontrib><description>Three-dimensional (3D) structural information on many length scales is of central importance in biological research. Excellent methods exist to obtain structures of molecules at atomic, organelles at electron microscopic, and tissue at light-microscopic resolution. A gap exists, however, when 3D tissue structure needs to be reconstructed over hundreds of micrometers with a resolution sufficient to follow the thinnest cellular processes and to identify small organelles such as synaptic vesicles. Such 3D data are, however, essential to understand cellular networks that, particularly in the nervous system, need to be completely reconstructed throughout a substantial spatial volume. Here we demonstrate that datasets meeting these requirements can be obtained by automated block-face imaging combined with serial sectioning inside the chamber of a scanning electron microscope. Backscattering contrast is used to visualize the heavy-metal staining of tissue prepared using techniques that are routine for transmission electron microscopy. Low-vacuum (20-60 Pa H(2)O) conditions prevent charging of the uncoated block face. The resolution is sufficient to trace even the thinnest axons and to identify synapses. Stacks of several hundred sections, 50-70 nm thick, have been obtained at a lateral position jitter of typically under 10 nm. This opens the possibility of automatically obtaining the electron-microscope-level 3D datasets needed to completely reconstruct the connectivity of neuronal circuits.</description><identifier>ISSN: 1545-7885</identifier><identifier>ISSN: 1544-9173</identifier><identifier>EISSN: 1545-7885</identifier><identifier>DOI: 10.1371/journal.pbio.0020329</identifier><identifier>PMID: 15514700</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Bioengineering ; Biophysics ; Brain - pathology ; Data Interpretation, Statistical ; Electron microscopes ; Electrons ; Experiments ; Image Processing, Computer-Assisted ; Imaging, Three-Dimensional - methods ; Light ; Medical imaging ; Mice ; Microscopy, Electron, Scanning - instrumentation ; Microscopy, Electron, Scanning - methods ; Nanostructures - chemistry ; Nerve Net ; Nervous System - metabolism ; Neurons - metabolism ; Neurons - pathology ; Neuroscience ; None ; Scanning electron microscopy ; Scattering, Radiation ; Synapses - metabolism ; Tomography</subject><ispartof>PLoS biology, 2004-11, Vol.2 (11), p.e329-e329</ispartof><rights>2004 Denk and Horstmann. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Citation: Denk W, Horstmann H (2004) Serial Block-Face Scanning Electron Microscopy to Reconstruct Three-Dimensional Tissue Nanostructure. PLoS Biol 2(11): e329. doi:10.1371/journal.pbio.0020329</rights><rights>Copyright: © 2004 Denk and Horstmann. 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c620t-2c745c68b80e27d5b44a5f3c234526fe814763023fbd5bb2442d8335fb458c013</citedby><cites>FETCH-LOGICAL-c620t-2c745c68b80e27d5b44a5f3c234526fe814763023fbd5bb2442d8335fb458c013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC524270/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC524270/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,2915,23847,27905,27906,53772,53774,79349,79350</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15514700$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Kristen M. Harris</contributor><creatorcontrib>Denk, Winfried</creatorcontrib><creatorcontrib>Horstmann, Heinz</creatorcontrib><title>Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure</title><title>PLoS biology</title><addtitle>PLoS Biol</addtitle><description>Three-dimensional (3D) structural information on many length scales is of central importance in biological research. Excellent methods exist to obtain structures of molecules at atomic, organelles at electron microscopic, and tissue at light-microscopic resolution. A gap exists, however, when 3D tissue structure needs to be reconstructed over hundreds of micrometers with a resolution sufficient to follow the thinnest cellular processes and to identify small organelles such as synaptic vesicles. Such 3D data are, however, essential to understand cellular networks that, particularly in the nervous system, need to be completely reconstructed throughout a substantial spatial volume. Here we demonstrate that datasets meeting these requirements can be obtained by automated block-face imaging combined with serial sectioning inside the chamber of a scanning electron microscope. Backscattering contrast is used to visualize the heavy-metal staining of tissue prepared using techniques that are routine for transmission electron microscopy. Low-vacuum (20-60 Pa H(2)O) conditions prevent charging of the uncoated block face. The resolution is sufficient to trace even the thinnest axons and to identify synapses. Stacks of several hundred sections, 50-70 nm thick, have been obtained at a lateral position jitter of typically under 10 nm. This opens the possibility of automatically obtaining the electron-microscope-level 3D datasets needed to completely reconstruct the connectivity of neuronal circuits.</description><subject>Animals</subject><subject>Bioengineering</subject><subject>Biophysics</subject><subject>Brain - pathology</subject><subject>Data Interpretation, Statistical</subject><subject>Electron microscopes</subject><subject>Electrons</subject><subject>Experiments</subject><subject>Image Processing, Computer-Assisted</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Light</subject><subject>Medical imaging</subject><subject>Mice</subject><subject>Microscopy, Electron, Scanning - instrumentation</subject><subject>Microscopy, Electron, Scanning - methods</subject><subject>Nanostructures - chemistry</subject><subject>Nerve Net</subject><subject>Nervous System - metabolism</subject><subject>Neurons - metabolism</subject><subject>Neurons - pathology</subject><subject>Neuroscience</subject><subject>None</subject><subject>Scanning electron microscopy</subject><subject>Scattering, Radiation</subject><subject>Synapses - metabolism</subject><subject>Tomography</subject><issn>1545-7885</issn><issn>1544-9173</issn><issn>1545-7885</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqFkk2LFDEQhhtR3HX0H4g2CN56zGcnffAgix8LCx7Uc0inK7MZ08mYpIX992acVndFEAIJqeetqlTepnmK0RZTgV_t45KC9tvD6OIWIYIoGe4155gz3gkp-f1b57PmUc77CpGByIfNGeYcM4HQeTN9guS0b0cfzdfOagNtNjoEF3YteDAlxdDOzqSYTTzctCW2CUwMuaTFlLZcJ4BucjOE7GJtpy0u5wXaoEM8MUuCx80Dq32GJ-u-ab68e_v54kN39fH95cWbq870BJWOGMG46eUoERAx8ZExzS01hDJOeguy9txTRKgda3AkjJFJUsrtyLg0CNNN8_yU9-BjVuuAssJkwEgIWtemuTwRU9R7dUhu1ulGRe3Uz4uYdkqn4owH1U9QZzoMnFPLcK3Zczv1nAwWrJS9rLler9WWcYbJQChJ-ztJ70aCu1a7-F1xwohAVf9y1af4bYFc1OyyAe91gLhk1Qsk5TAM_wWxoIwhRCv44i_w3zNgJ-r4qTmB_d0yRuporV8qdbSWWq1VZc9uP_ePaPUS_QEYlc4D</recordid><startdate>20041101</startdate><enddate>20041101</enddate><creator>Denk, Winfried</creator><creator>Horstmann, Heinz</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><scope>CZG</scope></search><sort><creationdate>20041101</creationdate><title>Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure</title><author>Denk, Winfried ; Horstmann, Heinz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c620t-2c745c68b80e27d5b44a5f3c234526fe814763023fbd5bb2442d8335fb458c013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Animals</topic><topic>Bioengineering</topic><topic>Biophysics</topic><topic>Brain - pathology</topic><topic>Data Interpretation, Statistical</topic><topic>Electron microscopes</topic><topic>Electrons</topic><topic>Experiments</topic><topic>Image Processing, Computer-Assisted</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Light</topic><topic>Medical imaging</topic><topic>Mice</topic><topic>Microscopy, Electron, Scanning - instrumentation</topic><topic>Microscopy, Electron, Scanning - methods</topic><topic>Nanostructures - chemistry</topic><topic>Nerve Net</topic><topic>Nervous System - metabolism</topic><topic>Neurons - metabolism</topic><topic>Neurons - pathology</topic><topic>Neuroscience</topic><topic>None</topic><topic>Scanning electron microscopy</topic><topic>Scattering, Radiation</topic><topic>Synapses - metabolism</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Denk, Winfried</creatorcontrib><creatorcontrib>Horstmann, Heinz</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>PLoS Biology</collection><jtitle>PLoS biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Denk, Winfried</au><au>Horstmann, Heinz</au><au>Kristen M. Harris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure</atitle><jtitle>PLoS biology</jtitle><addtitle>PLoS Biol</addtitle><date>2004-11-01</date><risdate>2004</risdate><volume>2</volume><issue>11</issue><spage>e329</spage><epage>e329</epage><pages>e329-e329</pages><issn>1545-7885</issn><issn>1544-9173</issn><eissn>1545-7885</eissn><abstract>Three-dimensional (3D) structural information on many length scales is of central importance in biological research. Excellent methods exist to obtain structures of molecules at atomic, organelles at electron microscopic, and tissue at light-microscopic resolution. A gap exists, however, when 3D tissue structure needs to be reconstructed over hundreds of micrometers with a resolution sufficient to follow the thinnest cellular processes and to identify small organelles such as synaptic vesicles. Such 3D data are, however, essential to understand cellular networks that, particularly in the nervous system, need to be completely reconstructed throughout a substantial spatial volume. Here we demonstrate that datasets meeting these requirements can be obtained by automated block-face imaging combined with serial sectioning inside the chamber of a scanning electron microscope. Backscattering contrast is used to visualize the heavy-metal staining of tissue prepared using techniques that are routine for transmission electron microscopy. Low-vacuum (20-60 Pa H(2)O) conditions prevent charging of the uncoated block face. The resolution is sufficient to trace even the thinnest axons and to identify synapses. Stacks of several hundred sections, 50-70 nm thick, have been obtained at a lateral position jitter of typically under 10 nm. This opens the possibility of automatically obtaining the electron-microscope-level 3D datasets needed to completely reconstruct the connectivity of neuronal circuits.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>15514700</pmid><doi>10.1371/journal.pbio.0020329</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-7885 |
ispartof | PLoS biology, 2004-11, Vol.2 (11), p.e329-e329 |
issn | 1545-7885 1544-9173 1545-7885 |
language | eng |
recordid | cdi_plos_journals_1291077377 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central |
subjects | Animals Bioengineering Biophysics Brain - pathology Data Interpretation, Statistical Electron microscopes Electrons Experiments Image Processing, Computer-Assisted Imaging, Three-Dimensional - methods Light Medical imaging Mice Microscopy, Electron, Scanning - instrumentation Microscopy, Electron, Scanning - methods Nanostructures - chemistry Nerve Net Nervous System - metabolism Neurons - metabolism Neurons - pathology Neuroscience None Scanning electron microscopy Scattering, Radiation Synapses - metabolism Tomography |
title | Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T13%3A51%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Serial%20block-face%20scanning%20electron%20microscopy%20to%20reconstruct%20three-dimensional%20tissue%20nanostructure&rft.jtitle=PLoS%20biology&rft.au=Denk,%20Winfried&rft.date=2004-11-01&rft.volume=2&rft.issue=11&rft.spage=e329&rft.epage=e329&rft.pages=e329-e329&rft.issn=1545-7885&rft.eissn=1545-7885&rft_id=info:doi/10.1371/journal.pbio.0020329&rft_dat=%3Cproquest_plos_%3E67088999%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1291077377&rft_id=info:pmid/15514700&rft_doaj_id=oai_doaj_org_article_6de20399553f413fb65fd6529fef8868&rfr_iscdi=true |