Bio-benchmarking of electronic nose sensors

Electronic noses, E-Noses, are instruments designed to reproduce the performance of animal noses or antennae but generally they cannot match the discriminating power of the biological original and have, therefore, been of limited utility. The manner in which odorant space is sampled is a critical fa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2009-07, Vol.4 (7), p.e6406-e6406
Hauptverfasser: Berna, Amalia Z, Anderson, Alisha R, Trowell, Stephen C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Electronic noses, E-Noses, are instruments designed to reproduce the performance of animal noses or antennae but generally they cannot match the discriminating power of the biological original and have, therefore, been of limited utility. The manner in which odorant space is sampled is a critical factor in the performance of all noses but so far it has been described in detail only for the fly antenna. Here we describe how a set of metal oxide (MOx) E-Nose sensors, which is the most commonly used type, samples odorant space and compare it with what is known about fly odorant receptors (ORs). Compared with a fly's odorant receptors, MOx sensors from an electronic nose are on average more narrowly tuned but much more highly correlated with each other. A set of insect ORs can therefore sample broader regions of odorant space independently and redundantly than an equivalent number of MOx sensors. The comparison also highlights some important questions about the molecular nature of fly ORs. The comparative approach generates practical learnings that may be taken up by solid-state physicists or engineers in designing new solid-state electronic nose sensors. It also potentially deepens our understanding of the performance of the biological system.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0006406