Mutant Glycyl-tRNA Synthetase (Gars) Ameliorates SOD1G93A Motor Neuron Degeneration Phenotype but Has Little Affect on Loa Dynein Heavy Chain Mutant Mice
Background In humans, mutations in the enzyme glycyl-tRNA synthetase (GARS) cause motor and sensory axon loss in the peripheral nervous system, and clinical phenotypes ranging from Charcot-Marie-Tooth neuropathy to a severe infantile form of spinal muscular atrophy. GARS is ubiquitously expressed an...
Gespeichert in:
Veröffentlicht in: | PloS one 2009-07, Vol.4 (7), p.e6218 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | e6218 |
container_title | PloS one |
container_volume | 4 |
creator | Banks, Gareth T. Bros-Facer, Virginie Williams, Hazel P. Chia, Ruth Achilli, Francesca Bryson, J. Barney Greensmith, Linda Fisher, Elizabeth M. C. |
description | Background In humans, mutations in the enzyme glycyl-tRNA synthetase (GARS) cause motor and sensory axon loss in the peripheral nervous system, and clinical phenotypes ranging from Charcot-Marie-Tooth neuropathy to a severe infantile form of spinal muscular atrophy. GARS is ubiquitously expressed and may have functions in addition to its canonical role in protein synthesis through catalyzing the addition of glycine to cognate tRNAs. Methodology/Principal Findings We have recently described a new mouse model with a point mutation in the Gars gene resulting in a cysteine to arginine change at residue 201. Heterozygous GarsC201R/+ mice have locomotor and sensory deficits. In an investigation of genetic mutations that lead to death of motor and sensory neurons, we have crossed the GarsC201R/+ mice to two other mutants: the TgSOD1G93A model of human amyotrophic lateral sclerosis and the Legs at odd angles mouse (Dync1h1Loa) which has a defect in the heavy chain of the dynein complex. We found the Dync1h1Loa/+;GarsC201R/+ double heterozygous mice are more impaired than either parent, and this is may be an additive effect of both mutations. Surprisingly, the GarsC201R mutation significantly delayed disease onset in the SOD1G93A;GarsC201R/+ double heterozygous mutant mice and increased lifespan by 29% on the genetic background investigated. Conclusions/Significance These findings raise intriguing possibilities for the study of pathogenetic mechanisms in all three mouse mutant strains. |
doi_str_mv | 10.1371/journal.pone.0006218 |
format | Article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1290694101</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2897468941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2498-805cb2d3fee4f0e034112dc56342d6f19901ef60d189915d4660ce1edfc4aa2f3</originalsourceid><addsrcrecordid>eNp1kU1vEzEQhi1ERT_gHyBhiQs9bPDXOusL0iqBBClpEYWz5XjHzVYbO7W9lfan8G_ZqguiB04zo3nmndG8CL2lZEb5nH68C330ppsdg4cZIUQyWr1AZ1RxVkhG-Mt_8lN0ntIdISWvpHyFTqkqFReCnaFf2z4bn_GqG-zQFfn7VY1vBp_3kE0C_GFlYrrE9QG6NkSTIeGb6yVdKV7jbcgh4ivoY_B4CbfgYSTasfi2Bx_ycAS86zNem4Q3bc4d4No5sBmPyCYYvBw8tB6vwTwMeLE3Yz5ds20tvEYnznQJ3kzxAv388vnHYl1srldfF_WmsEyoqqhIaXes4Q5AOAKEC0pZY0vJBWuko0oRCk6ShlZK0bIRUhILFBpnhTHM8Qv07kn32IWkp68mTZkiUglK6Eh8moh-d4DGgs_RdPoY24OJgw6m1c87vt3r2_Cg2ZyIak5GgfeTQAz3PaT8nzXiibIxpBTB_d1AiX60_M-UfrRcT5bz382CoRU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1290694101</pqid></control><display><type>article</type><title>Mutant Glycyl-tRNA Synthetase (Gars) Ameliorates SOD1G93A Motor Neuron Degeneration Phenotype but Has Little Affect on Loa Dynein Heavy Chain Mutant Mice</title><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Banks, Gareth T. ; Bros-Facer, Virginie ; Williams, Hazel P. ; Chia, Ruth ; Achilli, Francesca ; Bryson, J. Barney ; Greensmith, Linda ; Fisher, Elizabeth M. C.</creator><contributor>Andreu, Antoni L.</contributor><creatorcontrib>Banks, Gareth T. ; Bros-Facer, Virginie ; Williams, Hazel P. ; Chia, Ruth ; Achilli, Francesca ; Bryson, J. Barney ; Greensmith, Linda ; Fisher, Elizabeth M. C. ; Andreu, Antoni L.</creatorcontrib><description>Background In humans, mutations in the enzyme glycyl-tRNA synthetase (GARS) cause motor and sensory axon loss in the peripheral nervous system, and clinical phenotypes ranging from Charcot-Marie-Tooth neuropathy to a severe infantile form of spinal muscular atrophy. GARS is ubiquitously expressed and may have functions in addition to its canonical role in protein synthesis through catalyzing the addition of glycine to cognate tRNAs. Methodology/Principal Findings We have recently described a new mouse model with a point mutation in the Gars gene resulting in a cysteine to arginine change at residue 201. Heterozygous GarsC201R/+ mice have locomotor and sensory deficits. In an investigation of genetic mutations that lead to death of motor and sensory neurons, we have crossed the GarsC201R/+ mice to two other mutants: the TgSOD1G93A model of human amyotrophic lateral sclerosis and the Legs at odd angles mouse (Dync1h1Loa) which has a defect in the heavy chain of the dynein complex. We found the Dync1h1Loa/+;GarsC201R/+ double heterozygous mice are more impaired than either parent, and this is may be an additive effect of both mutations. Surprisingly, the GarsC201R mutation significantly delayed disease onset in the SOD1G93A;GarsC201R/+ double heterozygous mutant mice and increased lifespan by 29% on the genetic background investigated. Conclusions/Significance These findings raise intriguing possibilities for the study of pathogenetic mechanisms in all three mouse mutant strains.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0006218</identifier><identifier>PMID: 19593442</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Amyotrophic lateral sclerosis ; Arginine ; Atrophy ; Chains ; Charcot-Marie-Tooth disease ; Chemical synthesis ; Degeneration ; Disease ; Dynein ; Genes ; Genetics and Genomics/Disease Models ; Genomes ; Genotype & phenotype ; Glycine ; Glycine-tRNA ligase ; Legs ; Life span ; Mice ; Muscle function ; Mutagenesis ; Mutants ; Mutation ; Nervous system ; Neurological Disorders ; Neurological Disorders/Neurogenetics ; Neurological Disorders/Spinal Disorders ; Neurology ; Neuromuscular diseases ; Neurons ; Neuropathy ; Peripheral nervous system ; Peripheral neuropathy ; Point mutation ; Protein biosynthesis ; Protein synthesis ; Proteins ; Rodents ; Sensory neurons ; Spinal muscular atrophy ; Trends ; tRNA</subject><ispartof>PloS one, 2009-07, Vol.4 (7), p.e6218</ispartof><rights>2009 Banks et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Banks et al. 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2498-805cb2d3fee4f0e034112dc56342d6f19901ef60d189915d4660ce1edfc4aa2f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2704870/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2704870/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids></links><search><contributor>Andreu, Antoni L.</contributor><creatorcontrib>Banks, Gareth T.</creatorcontrib><creatorcontrib>Bros-Facer, Virginie</creatorcontrib><creatorcontrib>Williams, Hazel P.</creatorcontrib><creatorcontrib>Chia, Ruth</creatorcontrib><creatorcontrib>Achilli, Francesca</creatorcontrib><creatorcontrib>Bryson, J. Barney</creatorcontrib><creatorcontrib>Greensmith, Linda</creatorcontrib><creatorcontrib>Fisher, Elizabeth M. C.</creatorcontrib><title>Mutant Glycyl-tRNA Synthetase (Gars) Ameliorates SOD1G93A Motor Neuron Degeneration Phenotype but Has Little Affect on Loa Dynein Heavy Chain Mutant Mice</title><title>PloS one</title><description>Background In humans, mutations in the enzyme glycyl-tRNA synthetase (GARS) cause motor and sensory axon loss in the peripheral nervous system, and clinical phenotypes ranging from Charcot-Marie-Tooth neuropathy to a severe infantile form of spinal muscular atrophy. GARS is ubiquitously expressed and may have functions in addition to its canonical role in protein synthesis through catalyzing the addition of glycine to cognate tRNAs. Methodology/Principal Findings We have recently described a new mouse model with a point mutation in the Gars gene resulting in a cysteine to arginine change at residue 201. Heterozygous GarsC201R/+ mice have locomotor and sensory deficits. In an investigation of genetic mutations that lead to death of motor and sensory neurons, we have crossed the GarsC201R/+ mice to two other mutants: the TgSOD1G93A model of human amyotrophic lateral sclerosis and the Legs at odd angles mouse (Dync1h1Loa) which has a defect in the heavy chain of the dynein complex. We found the Dync1h1Loa/+;GarsC201R/+ double heterozygous mice are more impaired than either parent, and this is may be an additive effect of both mutations. Surprisingly, the GarsC201R mutation significantly delayed disease onset in the SOD1G93A;GarsC201R/+ double heterozygous mutant mice and increased lifespan by 29% on the genetic background investigated. Conclusions/Significance These findings raise intriguing possibilities for the study of pathogenetic mechanisms in all three mouse mutant strains.</description><subject>Amyotrophic lateral sclerosis</subject><subject>Arginine</subject><subject>Atrophy</subject><subject>Chains</subject><subject>Charcot-Marie-Tooth disease</subject><subject>Chemical synthesis</subject><subject>Degeneration</subject><subject>Disease</subject><subject>Dynein</subject><subject>Genes</subject><subject>Genetics and Genomics/Disease Models</subject><subject>Genomes</subject><subject>Genotype & phenotype</subject><subject>Glycine</subject><subject>Glycine-tRNA ligase</subject><subject>Legs</subject><subject>Life span</subject><subject>Mice</subject><subject>Muscle function</subject><subject>Mutagenesis</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Nervous system</subject><subject>Neurological Disorders</subject><subject>Neurological Disorders/Neurogenetics</subject><subject>Neurological Disorders/Spinal Disorders</subject><subject>Neurology</subject><subject>Neuromuscular diseases</subject><subject>Neurons</subject><subject>Neuropathy</subject><subject>Peripheral nervous system</subject><subject>Peripheral neuropathy</subject><subject>Point mutation</subject><subject>Protein biosynthesis</subject><subject>Protein synthesis</subject><subject>Proteins</subject><subject>Rodents</subject><subject>Sensory neurons</subject><subject>Spinal muscular atrophy</subject><subject>Trends</subject><subject>tRNA</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kU1vEzEQhi1ERT_gHyBhiQs9bPDXOusL0iqBBClpEYWz5XjHzVYbO7W9lfan8G_ZqguiB04zo3nmndG8CL2lZEb5nH68C330ppsdg4cZIUQyWr1AZ1RxVkhG-Mt_8lN0ntIdISWvpHyFTqkqFReCnaFf2z4bn_GqG-zQFfn7VY1vBp_3kE0C_GFlYrrE9QG6NkSTIeGb6yVdKV7jbcgh4ivoY_B4CbfgYSTasfi2Bx_ycAS86zNem4Q3bc4d4No5sBmPyCYYvBw8tB6vwTwMeLE3Yz5ds20tvEYnznQJ3kzxAv388vnHYl1srldfF_WmsEyoqqhIaXes4Q5AOAKEC0pZY0vJBWuko0oRCk6ShlZK0bIRUhILFBpnhTHM8Qv07kn32IWkp68mTZkiUglK6Eh8moh-d4DGgs_RdPoY24OJgw6m1c87vt3r2_Cg2ZyIak5GgfeTQAz3PaT8nzXiibIxpBTB_d1AiX60_M-UfrRcT5bz382CoRU</recordid><startdate>20090713</startdate><enddate>20090713</enddate><creator>Banks, Gareth T.</creator><creator>Bros-Facer, Virginie</creator><creator>Williams, Hazel P.</creator><creator>Chia, Ruth</creator><creator>Achilli, Francesca</creator><creator>Bryson, J. Barney</creator><creator>Greensmith, Linda</creator><creator>Fisher, Elizabeth M. C.</creator><general>Public Library of Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20090713</creationdate><title>Mutant Glycyl-tRNA Synthetase (Gars) Ameliorates SOD1G93A Motor Neuron Degeneration Phenotype but Has Little Affect on Loa Dynein Heavy Chain Mutant Mice</title><author>Banks, Gareth T. ; Bros-Facer, Virginie ; Williams, Hazel P. ; Chia, Ruth ; Achilli, Francesca ; Bryson, J. Barney ; Greensmith, Linda ; Fisher, Elizabeth M. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2498-805cb2d3fee4f0e034112dc56342d6f19901ef60d189915d4660ce1edfc4aa2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Amyotrophic lateral sclerosis</topic><topic>Arginine</topic><topic>Atrophy</topic><topic>Chains</topic><topic>Charcot-Marie-Tooth disease</topic><topic>Chemical synthesis</topic><topic>Degeneration</topic><topic>Disease</topic><topic>Dynein</topic><topic>Genes</topic><topic>Genetics and Genomics/Disease Models</topic><topic>Genomes</topic><topic>Genotype & phenotype</topic><topic>Glycine</topic><topic>Glycine-tRNA ligase</topic><topic>Legs</topic><topic>Life span</topic><topic>Mice</topic><topic>Muscle function</topic><topic>Mutagenesis</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Nervous system</topic><topic>Neurological Disorders</topic><topic>Neurological Disorders/Neurogenetics</topic><topic>Neurological Disorders/Spinal Disorders</topic><topic>Neurology</topic><topic>Neuromuscular diseases</topic><topic>Neurons</topic><topic>Neuropathy</topic><topic>Peripheral nervous system</topic><topic>Peripheral neuropathy</topic><topic>Point mutation</topic><topic>Protein biosynthesis</topic><topic>Protein synthesis</topic><topic>Proteins</topic><topic>Rodents</topic><topic>Sensory neurons</topic><topic>Spinal muscular atrophy</topic><topic>Trends</topic><topic>tRNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Banks, Gareth T.</creatorcontrib><creatorcontrib>Bros-Facer, Virginie</creatorcontrib><creatorcontrib>Williams, Hazel P.</creatorcontrib><creatorcontrib>Chia, Ruth</creatorcontrib><creatorcontrib>Achilli, Francesca</creatorcontrib><creatorcontrib>Bryson, J. Barney</creatorcontrib><creatorcontrib>Greensmith, Linda</creatorcontrib><creatorcontrib>Fisher, Elizabeth M. C.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Banks, Gareth T.</au><au>Bros-Facer, Virginie</au><au>Williams, Hazel P.</au><au>Chia, Ruth</au><au>Achilli, Francesca</au><au>Bryson, J. Barney</au><au>Greensmith, Linda</au><au>Fisher, Elizabeth M. C.</au><au>Andreu, Antoni L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mutant Glycyl-tRNA Synthetase (Gars) Ameliorates SOD1G93A Motor Neuron Degeneration Phenotype but Has Little Affect on Loa Dynein Heavy Chain Mutant Mice</atitle><jtitle>PloS one</jtitle><date>2009-07-13</date><risdate>2009</risdate><volume>4</volume><issue>7</issue><spage>e6218</spage><pages>e6218-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Background In humans, mutations in the enzyme glycyl-tRNA synthetase (GARS) cause motor and sensory axon loss in the peripheral nervous system, and clinical phenotypes ranging from Charcot-Marie-Tooth neuropathy to a severe infantile form of spinal muscular atrophy. GARS is ubiquitously expressed and may have functions in addition to its canonical role in protein synthesis through catalyzing the addition of glycine to cognate tRNAs. Methodology/Principal Findings We have recently described a new mouse model with a point mutation in the Gars gene resulting in a cysteine to arginine change at residue 201. Heterozygous GarsC201R/+ mice have locomotor and sensory deficits. In an investigation of genetic mutations that lead to death of motor and sensory neurons, we have crossed the GarsC201R/+ mice to two other mutants: the TgSOD1G93A model of human amyotrophic lateral sclerosis and the Legs at odd angles mouse (Dync1h1Loa) which has a defect in the heavy chain of the dynein complex. We found the Dync1h1Loa/+;GarsC201R/+ double heterozygous mice are more impaired than either parent, and this is may be an additive effect of both mutations. Surprisingly, the GarsC201R mutation significantly delayed disease onset in the SOD1G93A;GarsC201R/+ double heterozygous mutant mice and increased lifespan by 29% on the genetic background investigated. Conclusions/Significance These findings raise intriguing possibilities for the study of pathogenetic mechanisms in all three mouse mutant strains.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>19593442</pmid><doi>10.1371/journal.pone.0006218</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2009-07, Vol.4 (7), p.e6218 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1290694101 |
source | DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Amyotrophic lateral sclerosis Arginine Atrophy Chains Charcot-Marie-Tooth disease Chemical synthesis Degeneration Disease Dynein Genes Genetics and Genomics/Disease Models Genomes Genotype & phenotype Glycine Glycine-tRNA ligase Legs Life span Mice Muscle function Mutagenesis Mutants Mutation Nervous system Neurological Disorders Neurological Disorders/Neurogenetics Neurological Disorders/Spinal Disorders Neurology Neuromuscular diseases Neurons Neuropathy Peripheral nervous system Peripheral neuropathy Point mutation Protein biosynthesis Protein synthesis Proteins Rodents Sensory neurons Spinal muscular atrophy Trends tRNA |
title | Mutant Glycyl-tRNA Synthetase (Gars) Ameliorates SOD1G93A Motor Neuron Degeneration Phenotype but Has Little Affect on Loa Dynein Heavy Chain Mutant Mice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T01%3A20%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mutant%20Glycyl-tRNA%20Synthetase%20(Gars)%20Ameliorates%20SOD1G93A%20Motor%20Neuron%20Degeneration%20Phenotype%20but%20Has%20Little%20Affect%20on%20Loa%20Dynein%20Heavy%20Chain%20Mutant%20Mice&rft.jtitle=PloS%20one&rft.au=Banks,%20Gareth%20T.&rft.date=2009-07-13&rft.volume=4&rft.issue=7&rft.spage=e6218&rft.pages=e6218-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0006218&rft_dat=%3Cproquest_plos_%3E2897468941%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1290694101&rft_id=info:pmid/19593442&rfr_iscdi=true |