Unscented Kalman filter for brain-machine interfaces

Brain machine interfaces (BMIs) are devices that convert neural signals into commands to directly control artificial actuators, such as limb prostheses. Previous real-time methods applied to decoding behavioral commands from the activity of populations of neurons have generally relied upon linear mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2009-07, Vol.4 (7), p.e6243-e6243
Hauptverfasser: Li, Zheng, O'Doherty, Joseph E, Hanson, Timothy L, Lebedev, Mikhail A, Henriquez, Craig S, Nicolelis, Miguel A L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e6243
container_issue 7
container_start_page e6243
container_title PloS one
container_volume 4
creator Li, Zheng
O'Doherty, Joseph E
Hanson, Timothy L
Lebedev, Mikhail A
Henriquez, Craig S
Nicolelis, Miguel A L
description Brain machine interfaces (BMIs) are devices that convert neural signals into commands to directly control artificial actuators, such as limb prostheses. Previous real-time methods applied to decoding behavioral commands from the activity of populations of neurons have generally relied upon linear models of neural tuning and were limited in the way they used the abundant statistical information contained in the movement profiles of motor tasks. Here, we propose an n-th order unscented Kalman filter which implements two key features: (1) use of a non-linear (quadratic) model of neural tuning which describes neural activity significantly better than commonly-used linear tuning models, and (2) augmentation of the movement state variables with a history of n-1 recent states, which improves prediction of the desired command even before incorporating neural activity information and allows the tuning model to capture relationships between neural activity and movement at multiple time offsets simultaneously. This new filter was tested in BMI experiments in which rhesus monkeys used their cortical activity, recorded through chronically implanted multielectrode arrays, to directly control computer cursors. The 10th order unscented Kalman filter outperformed the standard Kalman filter and the Wiener filter in both off-line reconstruction of movement trajectories and real-time, closed-loop BMI operation.
doi_str_mv 10.1371/journal.pone.0006243
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1290690852</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A472955676</galeid><doaj_id>oai_doaj_org_article_8aebaeba9efc486e8aad1e0974f5450a</doaj_id><sourcerecordid>A472955676</sourcerecordid><originalsourceid>FETCH-LOGICAL-c693t-b61f4b640ed281e0a34bf8a0d40b93c2353aa1b434d3d609462ba0bc7b2525ed3</originalsourceid><addsrcrecordid>eNqNkm-LEzEQxhdRvLP6DUQLwoEvWrNJNpu8EY7DP8WDA_V8Gya7s21KNqnJrui3N7WrtiIoCSQkv5nMPHmK4nFJliWryxfbMEYPbrkLHpeEEEE5u1Ocl4rRhaCE3T3anxUPUtoSUjEpxP3irFSCMFLz84Lf-tSgH7CdvwPXg5931g0Y512IcxPB-kUPzcZ6nNtMxQ4aTA-Lex24hI-mdVbcvn718ert4vrmzerq8nrRCMWGhRFlx43gBFsqSyTAuOkkkJYTo1hDWcUASsMZb1kriOKCGiCmqQ2taIUtmxVPD3l3LiQ9NZx0SRURisiKZmJ1INoAW72Ltof4TQew-sdBiGsNcbCNQy0BzX4q7BouBUqANhelat5VvMrFzYqX02uj6bHdqxLBnSQ9vfF2o9fhi6Y1qWq1L-ZiShDD5xHToHubxXUOPIYxaVFzqSST_wQpoVkwyTL47A_w7yIsD9Qacp_WdyGX1-TRYm-bbI_8pagveU1VVYla5IDnJwGZGfDrsIYxJb368P7_2ZtPp-zFEbtBcMMmBTcONvh0CvID2MSQUsTul8ol0Xt3_-xT792tJ3fnsCfHP_Q7aLIz-w7VKfUD</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1290690852</pqid></control><display><type>article</type><title>Unscented Kalman filter for brain-machine interfaces</title><source>MEDLINE</source><source>PubMed Central(OpenAccess)</source><source>Public Library of Science</source><source>DOAJ Directory of Open Access Journals</source><source>Free Full-Text Journals in Chemistry</source><source>EZB Electronic Journals Library</source><creator>Li, Zheng ; O'Doherty, Joseph E ; Hanson, Timothy L ; Lebedev, Mikhail A ; Henriquez, Craig S ; Nicolelis, Miguel A L</creator><contributor>LeCun, Yann</contributor><creatorcontrib>Li, Zheng ; O'Doherty, Joseph E ; Hanson, Timothy L ; Lebedev, Mikhail A ; Henriquez, Craig S ; Nicolelis, Miguel A L ; LeCun, Yann</creatorcontrib><description>Brain machine interfaces (BMIs) are devices that convert neural signals into commands to directly control artificial actuators, such as limb prostheses. Previous real-time methods applied to decoding behavioral commands from the activity of populations of neurons have generally relied upon linear models of neural tuning and were limited in the way they used the abundant statistical information contained in the movement profiles of motor tasks. Here, we propose an n-th order unscented Kalman filter which implements two key features: (1) use of a non-linear (quadratic) model of neural tuning which describes neural activity significantly better than commonly-used linear tuning models, and (2) augmentation of the movement state variables with a history of n-1 recent states, which improves prediction of the desired command even before incorporating neural activity information and allows the tuning model to capture relationships between neural activity and movement at multiple time offsets simultaneously. This new filter was tested in BMI experiments in which rhesus monkeys used their cortical activity, recorded through chronically implanted multielectrode arrays, to directly control computer cursors. The 10th order unscented Kalman filter outperformed the standard Kalman filter and the Wiener filter in both off-line reconstruction of movement trajectories and real-time, closed-loop BMI operation.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0006243</identifier><identifier>PMID: 19603074</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Accuracy ; Algorithms ; Animal experimentation ; Animals ; Artificial Limbs ; Augmentation ; Behavior, Animal ; Biomedical engineering ; Body mass ; Brain ; Brain - physiology ; Brain research ; Commands ; Computational Biology/Computational Neuroscience ; Cortex ; Decoding ; Engineering ; Experiments ; Information processing ; Interfaces ; Kalman filter ; Kalman filters ; Kinematics ; Macaca mulatta ; Macaca mulatta - physiology ; Man-machine interfaces ; Methods ; Models, Biological ; Monkeys ; Monkeys &amp; apes ; Neurobiology ; Neurons ; Neuroscience/Motor Systems ; Neuroscience/Theoretical Neuroscience ; Neurosciences ; Offsets ; Prostheses ; Prosthetics ; Random variables ; Real time operation ; Tuning</subject><ispartof>PloS one, 2009-07, Vol.4 (7), p.e6243-e6243</ispartof><rights>COPYRIGHT 2009 Public Library of Science</rights><rights>2009 Li et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Li et al. 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c693t-b61f4b640ed281e0a34bf8a0d40b93c2353aa1b434d3d609462ba0bc7b2525ed3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2705792/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2705792/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53770,53772,79347,79348</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19603074$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>LeCun, Yann</contributor><creatorcontrib>Li, Zheng</creatorcontrib><creatorcontrib>O'Doherty, Joseph E</creatorcontrib><creatorcontrib>Hanson, Timothy L</creatorcontrib><creatorcontrib>Lebedev, Mikhail A</creatorcontrib><creatorcontrib>Henriquez, Craig S</creatorcontrib><creatorcontrib>Nicolelis, Miguel A L</creatorcontrib><title>Unscented Kalman filter for brain-machine interfaces</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Brain machine interfaces (BMIs) are devices that convert neural signals into commands to directly control artificial actuators, such as limb prostheses. Previous real-time methods applied to decoding behavioral commands from the activity of populations of neurons have generally relied upon linear models of neural tuning and were limited in the way they used the abundant statistical information contained in the movement profiles of motor tasks. Here, we propose an n-th order unscented Kalman filter which implements two key features: (1) use of a non-linear (quadratic) model of neural tuning which describes neural activity significantly better than commonly-used linear tuning models, and (2) augmentation of the movement state variables with a history of n-1 recent states, which improves prediction of the desired command even before incorporating neural activity information and allows the tuning model to capture relationships between neural activity and movement at multiple time offsets simultaneously. This new filter was tested in BMI experiments in which rhesus monkeys used their cortical activity, recorded through chronically implanted multielectrode arrays, to directly control computer cursors. The 10th order unscented Kalman filter outperformed the standard Kalman filter and the Wiener filter in both off-line reconstruction of movement trajectories and real-time, closed-loop BMI operation.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Animal experimentation</subject><subject>Animals</subject><subject>Artificial Limbs</subject><subject>Augmentation</subject><subject>Behavior, Animal</subject><subject>Biomedical engineering</subject><subject>Body mass</subject><subject>Brain</subject><subject>Brain - physiology</subject><subject>Brain research</subject><subject>Commands</subject><subject>Computational Biology/Computational Neuroscience</subject><subject>Cortex</subject><subject>Decoding</subject><subject>Engineering</subject><subject>Experiments</subject><subject>Information processing</subject><subject>Interfaces</subject><subject>Kalman filter</subject><subject>Kalman filters</subject><subject>Kinematics</subject><subject>Macaca mulatta</subject><subject>Macaca mulatta - physiology</subject><subject>Man-machine interfaces</subject><subject>Methods</subject><subject>Models, Biological</subject><subject>Monkeys</subject><subject>Monkeys &amp; apes</subject><subject>Neurobiology</subject><subject>Neurons</subject><subject>Neuroscience/Motor Systems</subject><subject>Neuroscience/Theoretical Neuroscience</subject><subject>Neurosciences</subject><subject>Offsets</subject><subject>Prostheses</subject><subject>Prosthetics</subject><subject>Random variables</subject><subject>Real time operation</subject><subject>Tuning</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkm-LEzEQxhdRvLP6DUQLwoEvWrNJNpu8EY7DP8WDA_V8Gya7s21KNqnJrui3N7WrtiIoCSQkv5nMPHmK4nFJliWryxfbMEYPbrkLHpeEEEE5u1Ocl4rRhaCE3T3anxUPUtoSUjEpxP3irFSCMFLz84Lf-tSgH7CdvwPXg5931g0Y512IcxPB-kUPzcZ6nNtMxQ4aTA-Lex24hI-mdVbcvn718ert4vrmzerq8nrRCMWGhRFlx43gBFsqSyTAuOkkkJYTo1hDWcUASsMZb1kriOKCGiCmqQ2taIUtmxVPD3l3LiQ9NZx0SRURisiKZmJ1INoAW72Ltof4TQew-sdBiGsNcbCNQy0BzX4q7BouBUqANhelat5VvMrFzYqX02uj6bHdqxLBnSQ9vfF2o9fhi6Y1qWq1L-ZiShDD5xHToHubxXUOPIYxaVFzqSST_wQpoVkwyTL47A_w7yIsD9Qacp_WdyGX1-TRYm-bbI_8pagveU1VVYla5IDnJwGZGfDrsIYxJb368P7_2ZtPp-zFEbtBcMMmBTcONvh0CvID2MSQUsTul8ol0Xt3_-xT792tJ3fnsCfHP_Q7aLIz-w7VKfUD</recordid><startdate>20090715</startdate><enddate>20090715</enddate><creator>Li, Zheng</creator><creator>O'Doherty, Joseph E</creator><creator>Hanson, Timothy L</creator><creator>Lebedev, Mikhail A</creator><creator>Henriquez, Craig S</creator><creator>Nicolelis, Miguel A L</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7TK</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20090715</creationdate><title>Unscented Kalman filter for brain-machine interfaces</title><author>Li, Zheng ; O'Doherty, Joseph E ; Hanson, Timothy L ; Lebedev, Mikhail A ; Henriquez, Craig S ; Nicolelis, Miguel A L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c693t-b61f4b640ed281e0a34bf8a0d40b93c2353aa1b434d3d609462ba0bc7b2525ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Animal experimentation</topic><topic>Animals</topic><topic>Artificial Limbs</topic><topic>Augmentation</topic><topic>Behavior, Animal</topic><topic>Biomedical engineering</topic><topic>Body mass</topic><topic>Brain</topic><topic>Brain - physiology</topic><topic>Brain research</topic><topic>Commands</topic><topic>Computational Biology/Computational Neuroscience</topic><topic>Cortex</topic><topic>Decoding</topic><topic>Engineering</topic><topic>Experiments</topic><topic>Information processing</topic><topic>Interfaces</topic><topic>Kalman filter</topic><topic>Kalman filters</topic><topic>Kinematics</topic><topic>Macaca mulatta</topic><topic>Macaca mulatta - physiology</topic><topic>Man-machine interfaces</topic><topic>Methods</topic><topic>Models, Biological</topic><topic>Monkeys</topic><topic>Monkeys &amp; apes</topic><topic>Neurobiology</topic><topic>Neurons</topic><topic>Neuroscience/Motor Systems</topic><topic>Neuroscience/Theoretical Neuroscience</topic><topic>Neurosciences</topic><topic>Offsets</topic><topic>Prostheses</topic><topic>Prosthetics</topic><topic>Random variables</topic><topic>Real time operation</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zheng</creatorcontrib><creatorcontrib>O'Doherty, Joseph E</creatorcontrib><creatorcontrib>Hanson, Timothy L</creatorcontrib><creatorcontrib>Lebedev, Mikhail A</creatorcontrib><creatorcontrib>Henriquez, Craig S</creatorcontrib><creatorcontrib>Nicolelis, Miguel A L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints Resource Center</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zheng</au><au>O'Doherty, Joseph E</au><au>Hanson, Timothy L</au><au>Lebedev, Mikhail A</au><au>Henriquez, Craig S</au><au>Nicolelis, Miguel A L</au><au>LeCun, Yann</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unscented Kalman filter for brain-machine interfaces</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2009-07-15</date><risdate>2009</risdate><volume>4</volume><issue>7</issue><spage>e6243</spage><epage>e6243</epage><pages>e6243-e6243</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Brain machine interfaces (BMIs) are devices that convert neural signals into commands to directly control artificial actuators, such as limb prostheses. Previous real-time methods applied to decoding behavioral commands from the activity of populations of neurons have generally relied upon linear models of neural tuning and were limited in the way they used the abundant statistical information contained in the movement profiles of motor tasks. Here, we propose an n-th order unscented Kalman filter which implements two key features: (1) use of a non-linear (quadratic) model of neural tuning which describes neural activity significantly better than commonly-used linear tuning models, and (2) augmentation of the movement state variables with a history of n-1 recent states, which improves prediction of the desired command even before incorporating neural activity information and allows the tuning model to capture relationships between neural activity and movement at multiple time offsets simultaneously. This new filter was tested in BMI experiments in which rhesus monkeys used their cortical activity, recorded through chronically implanted multielectrode arrays, to directly control computer cursors. The 10th order unscented Kalman filter outperformed the standard Kalman filter and the Wiener filter in both off-line reconstruction of movement trajectories and real-time, closed-loop BMI operation.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>19603074</pmid><doi>10.1371/journal.pone.0006243</doi><tpages>e6243</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2009-07, Vol.4 (7), p.e6243-e6243
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1290690852
source MEDLINE; PubMed Central(OpenAccess); Public Library of Science; DOAJ Directory of Open Access Journals; Free Full-Text Journals in Chemistry; EZB Electronic Journals Library
subjects Accuracy
Algorithms
Animal experimentation
Animals
Artificial Limbs
Augmentation
Behavior, Animal
Biomedical engineering
Body mass
Brain
Brain - physiology
Brain research
Commands
Computational Biology/Computational Neuroscience
Cortex
Decoding
Engineering
Experiments
Information processing
Interfaces
Kalman filter
Kalman filters
Kinematics
Macaca mulatta
Macaca mulatta - physiology
Man-machine interfaces
Methods
Models, Biological
Monkeys
Monkeys & apes
Neurobiology
Neurons
Neuroscience/Motor Systems
Neuroscience/Theoretical Neuroscience
Neurosciences
Offsets
Prostheses
Prosthetics
Random variables
Real time operation
Tuning
title Unscented Kalman filter for brain-machine interfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A26%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unscented%20Kalman%20filter%20for%20brain-machine%20interfaces&rft.jtitle=PloS%20one&rft.au=Li,%20Zheng&rft.date=2009-07-15&rft.volume=4&rft.issue=7&rft.spage=e6243&rft.epage=e6243&rft.pages=e6243-e6243&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0006243&rft_dat=%3Cgale_plos_%3EA472955676%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1290690852&rft_id=info:pmid/19603074&rft_galeid=A472955676&rft_doaj_id=oai_doaj_org_article_8aebaeba9efc486e8aad1e0974f5450a&rfr_iscdi=true