Evolutionary insights from a genetically divergent hantavirus harbored by the European common mole (Talpa europaea)
The discovery of genetically distinct hantaviruses in shrews (Order Soricomorpha, Family Soricidae) from widely separated geographic regions challenges the hypothesis that rodents (Order Rodentia, Family Muridae and Cricetidae) are the primordial reservoir hosts of hantaviruses and also predicts tha...
Gespeichert in:
Veröffentlicht in: | PloS one 2009-07, Vol.4 (7), p.e6149-e6149 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e6149 |
---|---|
container_issue | 7 |
container_start_page | e6149 |
container_title | PloS one |
container_volume | 4 |
creator | Kang, Hae Ji Bennett, Shannon N Sumibcay, Laarni Arai, Satoru Hope, Andrew G Mocz, Gabor Song, Jin-Won Cook, Joseph A Yanagihara, Richard |
description | The discovery of genetically distinct hantaviruses in shrews (Order Soricomorpha, Family Soricidae) from widely separated geographic regions challenges the hypothesis that rodents (Order Rodentia, Family Muridae and Cricetidae) are the primordial reservoir hosts of hantaviruses and also predicts that other soricomorphs harbor hantaviruses. Recently, novel hantavirus genomes have been detected in moles of the Family Talpidae, including the Japanese shrew mole (Urotrichus talpoides) and American shrew mole (Neurotrichus gibbsii). We present new insights into the evolutionary history of hantaviruses gained from a highly divergent hantavirus, designated Nova virus (NVAV), identified in the European common mole (Talpa europaea) captured in Hungary.
Pair-wise alignment and comparison of the full-length S- and L-genomic segments indicated moderately low sequence similarity of 54-65% and 46-63% at the nucleotide and amino acid levels, respectively, between NVAV and representative rodent- and soricid-borne hantaviruses. Despite the high degree of sequence divergence, the predicted secondary structure of the NVAV nucleocapsid protein exhibited the characteristic coiled-coil domains at the amino-terminal end, and the L-segment motifs, typically found in hantaviruses, were well conserved. Phylogenetic analyses, using maximum-likelihood and Bayesian methods, showed that NVAV formed a distinct clade that was evolutionarily distant from all other hantaviruses.
Newly identified hantaviruses harbored by shrews and moles support long-standing virus-host relationships and suggest that ancestral soricomorphs, rather than rodents, may have been the early or original mammalian hosts. |
doi_str_mv | 10.1371/journal.pone.0006149 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1290674153</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A472977975</galeid><doaj_id>oai_doaj_org_article_fa17677f183149d6b29ea05db60965e4</doaj_id><sourcerecordid>A472977975</sourcerecordid><originalsourceid>FETCH-LOGICAL-c759t-7995fff28a6a85058a08280219fd135a4918dcbcf391560961abc509d60e9f613</originalsourceid><addsrcrecordid>eNqNk1GL1DAQx4so3nn6DUQDwuE97JqkTdK8CMex6sLBgZ6-hmmbdLOkzZq0i_vtzbpVd0VQ8pBh5jeTyT-ZLHtO8JzkgrxZ-zH04OYb3-s5xpiTQj7IzonM6YxTnD88ss-yJzGuMWZ5yfnj7IxIVlLC2HkWF1vvxsH6HsIO2T7adjVEZILvEKBW93qwNTi3Q43d6pAcA1pBP8DWhjEmM1Q-6AZVOzSsNFqMwW809Kj2Xed71Hmn0et7cBtAeh8DDVdPs0cGXNTPpv0i-_xucX_zYXZ79355c307qwWTw0xIyYwxtAQOJcOsBFzSElMiTUNyBoUkZVNXtcklYRxLTqCqGZYNx1oaTvKL7OWh7sb5qCa9oiJUYi4KwvJELA9E42GtNsF2SQXlwaofDh9aBSEJ4LQyQAQXwpAyT0I3vKJSA2ZNtT-Z6SLVejudNladbuqkVAB3UvQ00tuVav1WUYEpxvt2L6cCwX8ddRxUZ2OtnYNe-zGq1DOnnNJ_ghQLXohcJPDVH-DfRZgfqBbSPW1vfGqvTqvRna3T7zI2-a8LQaUQUrCUcHWSkJhBfxtaGGNUy08f_5-9-3LKXh6xKw1uWMXpd8ZTsDiAdfAxBm1-qUyw2g_Hz3uq_XCoaThS2ovjF_qdNE1D_h1gQgsp</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1290674153</pqid></control><display><type>article</type><title>Evolutionary insights from a genetically divergent hantavirus harbored by the European common mole (Talpa europaea)</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Kang, Hae Ji ; Bennett, Shannon N ; Sumibcay, Laarni ; Arai, Satoru ; Hope, Andrew G ; Mocz, Gabor ; Song, Jin-Won ; Cook, Joseph A ; Yanagihara, Richard</creator><creatorcontrib>Kang, Hae Ji ; Bennett, Shannon N ; Sumibcay, Laarni ; Arai, Satoru ; Hope, Andrew G ; Mocz, Gabor ; Song, Jin-Won ; Cook, Joseph A ; Yanagihara, Richard</creatorcontrib><description>The discovery of genetically distinct hantaviruses in shrews (Order Soricomorpha, Family Soricidae) from widely separated geographic regions challenges the hypothesis that rodents (Order Rodentia, Family Muridae and Cricetidae) are the primordial reservoir hosts of hantaviruses and also predicts that other soricomorphs harbor hantaviruses. Recently, novel hantavirus genomes have been detected in moles of the Family Talpidae, including the Japanese shrew mole (Urotrichus talpoides) and American shrew mole (Neurotrichus gibbsii). We present new insights into the evolutionary history of hantaviruses gained from a highly divergent hantavirus, designated Nova virus (NVAV), identified in the European common mole (Talpa europaea) captured in Hungary.
Pair-wise alignment and comparison of the full-length S- and L-genomic segments indicated moderately low sequence similarity of 54-65% and 46-63% at the nucleotide and amino acid levels, respectively, between NVAV and representative rodent- and soricid-borne hantaviruses. Despite the high degree of sequence divergence, the predicted secondary structure of the NVAV nucleocapsid protein exhibited the characteristic coiled-coil domains at the amino-terminal end, and the L-segment motifs, typically found in hantaviruses, were well conserved. Phylogenetic analyses, using maximum-likelihood and Bayesian methods, showed that NVAV formed a distinct clade that was evolutionarily distant from all other hantaviruses.
Newly identified hantaviruses harbored by shrews and moles support long-standing virus-host relationships and suggest that ancestral soricomorphs, rather than rodents, may have been the early or original mammalian hosts.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0006149</identifier><identifier>PMID: 19582155</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Amino Acid Sequence ; Amino acids ; Analysis ; Animals ; Base Sequence ; Bayesian analysis ; Biogeography ; Biological Evolution ; Biology ; Blarina brevicauda ; Cricetidae ; Cytochrome ; Divergence ; DNA Primers ; Evolutionary genetics ; Genes ; Genomes ; Genomics ; Hantavirus ; Infectious diseases ; Infectious Diseases/Viral Infections ; Molecular Sequence Data ; Moles - virology ; Muridae ; Museums ; National parks ; Neurotrichus gibbsii ; Nucleocapsids ; Orthohantavirus - classification ; Orthohantavirus - genetics ; Orthohantavirus - isolation & purification ; Phylogenetics ; Phylogeny ; Protein structure ; Protein Structure, Secondary ; Proteins ; Reverse Transcriptase Polymerase Chain Reaction ; Rodentia ; Rodents ; Secondary structure ; Sequence Homology, Amino Acid ; Small mammals ; Soricidae ; Talpa europaea ; Talpidae ; Urotrichus talpoides ; Viral Proteins - chemistry ; Virology/Emerging Viral Diseases ; Virology/Virus Evolution and Symbiosis ; Viruses</subject><ispartof>PloS one, 2009-07, Vol.4 (7), p.e6149-e6149</ispartof><rights>COPYRIGHT 2009 Public Library of Science</rights><rights>2009 Kang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Kang et al. 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c759t-7995fff28a6a85058a08280219fd135a4918dcbcf391560961abc509d60e9f613</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2702001/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2702001/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19582155$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kang, Hae Ji</creatorcontrib><creatorcontrib>Bennett, Shannon N</creatorcontrib><creatorcontrib>Sumibcay, Laarni</creatorcontrib><creatorcontrib>Arai, Satoru</creatorcontrib><creatorcontrib>Hope, Andrew G</creatorcontrib><creatorcontrib>Mocz, Gabor</creatorcontrib><creatorcontrib>Song, Jin-Won</creatorcontrib><creatorcontrib>Cook, Joseph A</creatorcontrib><creatorcontrib>Yanagihara, Richard</creatorcontrib><title>Evolutionary insights from a genetically divergent hantavirus harbored by the European common mole (Talpa europaea)</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The discovery of genetically distinct hantaviruses in shrews (Order Soricomorpha, Family Soricidae) from widely separated geographic regions challenges the hypothesis that rodents (Order Rodentia, Family Muridae and Cricetidae) are the primordial reservoir hosts of hantaviruses and also predicts that other soricomorphs harbor hantaviruses. Recently, novel hantavirus genomes have been detected in moles of the Family Talpidae, including the Japanese shrew mole (Urotrichus talpoides) and American shrew mole (Neurotrichus gibbsii). We present new insights into the evolutionary history of hantaviruses gained from a highly divergent hantavirus, designated Nova virus (NVAV), identified in the European common mole (Talpa europaea) captured in Hungary.
Pair-wise alignment and comparison of the full-length S- and L-genomic segments indicated moderately low sequence similarity of 54-65% and 46-63% at the nucleotide and amino acid levels, respectively, between NVAV and representative rodent- and soricid-borne hantaviruses. Despite the high degree of sequence divergence, the predicted secondary structure of the NVAV nucleocapsid protein exhibited the characteristic coiled-coil domains at the amino-terminal end, and the L-segment motifs, typically found in hantaviruses, were well conserved. Phylogenetic analyses, using maximum-likelihood and Bayesian methods, showed that NVAV formed a distinct clade that was evolutionarily distant from all other hantaviruses.
Newly identified hantaviruses harbored by shrews and moles support long-standing virus-host relationships and suggest that ancestral soricomorphs, rather than rodents, may have been the early or original mammalian hosts.</description><subject>Amino Acid Sequence</subject><subject>Amino acids</subject><subject>Analysis</subject><subject>Animals</subject><subject>Base Sequence</subject><subject>Bayesian analysis</subject><subject>Biogeography</subject><subject>Biological Evolution</subject><subject>Biology</subject><subject>Blarina brevicauda</subject><subject>Cricetidae</subject><subject>Cytochrome</subject><subject>Divergence</subject><subject>DNA Primers</subject><subject>Evolutionary genetics</subject><subject>Genes</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Hantavirus</subject><subject>Infectious diseases</subject><subject>Infectious Diseases/Viral Infections</subject><subject>Molecular Sequence Data</subject><subject>Moles - virology</subject><subject>Muridae</subject><subject>Museums</subject><subject>National parks</subject><subject>Neurotrichus gibbsii</subject><subject>Nucleocapsids</subject><subject>Orthohantavirus - classification</subject><subject>Orthohantavirus - genetics</subject><subject>Orthohantavirus - isolation & purification</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>Protein structure</subject><subject>Protein Structure, Secondary</subject><subject>Proteins</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>Rodentia</subject><subject>Rodents</subject><subject>Secondary structure</subject><subject>Sequence Homology, Amino Acid</subject><subject>Small mammals</subject><subject>Soricidae</subject><subject>Talpa europaea</subject><subject>Talpidae</subject><subject>Urotrichus talpoides</subject><subject>Viral Proteins - chemistry</subject><subject>Virology/Emerging Viral Diseases</subject><subject>Virology/Virus Evolution and Symbiosis</subject><subject>Viruses</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1GL1DAQx4so3nn6DUQDwuE97JqkTdK8CMex6sLBgZ6-hmmbdLOkzZq0i_vtzbpVd0VQ8pBh5jeTyT-ZLHtO8JzkgrxZ-zH04OYb3-s5xpiTQj7IzonM6YxTnD88ss-yJzGuMWZ5yfnj7IxIVlLC2HkWF1vvxsH6HsIO2T7adjVEZILvEKBW93qwNTi3Q43d6pAcA1pBP8DWhjEmM1Q-6AZVOzSsNFqMwW809Kj2Xed71Hmn0et7cBtAeh8DDVdPs0cGXNTPpv0i-_xucX_zYXZ79355c307qwWTw0xIyYwxtAQOJcOsBFzSElMiTUNyBoUkZVNXtcklYRxLTqCqGZYNx1oaTvKL7OWh7sb5qCa9oiJUYi4KwvJELA9E42GtNsF2SQXlwaofDh9aBSEJ4LQyQAQXwpAyT0I3vKJSA2ZNtT-Z6SLVejudNladbuqkVAB3UvQ00tuVav1WUYEpxvt2L6cCwX8ddRxUZ2OtnYNe-zGq1DOnnNJ_ghQLXohcJPDVH-DfRZgfqBbSPW1vfGqvTqvRna3T7zI2-a8LQaUQUrCUcHWSkJhBfxtaGGNUy08f_5-9-3LKXh6xKw1uWMXpd8ZTsDiAdfAxBm1-qUyw2g_Hz3uq_XCoaThS2ovjF_qdNE1D_h1gQgsp</recordid><startdate>20090707</startdate><enddate>20090707</enddate><creator>Kang, Hae Ji</creator><creator>Bennett, Shannon N</creator><creator>Sumibcay, Laarni</creator><creator>Arai, Satoru</creator><creator>Hope, Andrew G</creator><creator>Mocz, Gabor</creator><creator>Song, Jin-Won</creator><creator>Cook, Joseph A</creator><creator>Yanagihara, Richard</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20090707</creationdate><title>Evolutionary insights from a genetically divergent hantavirus harbored by the European common mole (Talpa europaea)</title><author>Kang, Hae Ji ; Bennett, Shannon N ; Sumibcay, Laarni ; Arai, Satoru ; Hope, Andrew G ; Mocz, Gabor ; Song, Jin-Won ; Cook, Joseph A ; Yanagihara, Richard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c759t-7995fff28a6a85058a08280219fd135a4918dcbcf391560961abc509d60e9f613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Amino Acid Sequence</topic><topic>Amino acids</topic><topic>Analysis</topic><topic>Animals</topic><topic>Base Sequence</topic><topic>Bayesian analysis</topic><topic>Biogeography</topic><topic>Biological Evolution</topic><topic>Biology</topic><topic>Blarina brevicauda</topic><topic>Cricetidae</topic><topic>Cytochrome</topic><topic>Divergence</topic><topic>DNA Primers</topic><topic>Evolutionary genetics</topic><topic>Genes</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Hantavirus</topic><topic>Infectious diseases</topic><topic>Infectious Diseases/Viral Infections</topic><topic>Molecular Sequence Data</topic><topic>Moles - virology</topic><topic>Muridae</topic><topic>Museums</topic><topic>National parks</topic><topic>Neurotrichus gibbsii</topic><topic>Nucleocapsids</topic><topic>Orthohantavirus - classification</topic><topic>Orthohantavirus - genetics</topic><topic>Orthohantavirus - isolation & purification</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>Protein structure</topic><topic>Protein Structure, Secondary</topic><topic>Proteins</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>Rodentia</topic><topic>Rodents</topic><topic>Secondary structure</topic><topic>Sequence Homology, Amino Acid</topic><topic>Small mammals</topic><topic>Soricidae</topic><topic>Talpa europaea</topic><topic>Talpidae</topic><topic>Urotrichus talpoides</topic><topic>Viral Proteins - chemistry</topic><topic>Virology/Emerging Viral Diseases</topic><topic>Virology/Virus Evolution and Symbiosis</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Hae Ji</creatorcontrib><creatorcontrib>Bennett, Shannon N</creatorcontrib><creatorcontrib>Sumibcay, Laarni</creatorcontrib><creatorcontrib>Arai, Satoru</creatorcontrib><creatorcontrib>Hope, Andrew G</creatorcontrib><creatorcontrib>Mocz, Gabor</creatorcontrib><creatorcontrib>Song, Jin-Won</creatorcontrib><creatorcontrib>Cook, Joseph A</creatorcontrib><creatorcontrib>Yanagihara, Richard</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints in Context (Gale)</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Hae Ji</au><au>Bennett, Shannon N</au><au>Sumibcay, Laarni</au><au>Arai, Satoru</au><au>Hope, Andrew G</au><au>Mocz, Gabor</au><au>Song, Jin-Won</au><au>Cook, Joseph A</au><au>Yanagihara, Richard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolutionary insights from a genetically divergent hantavirus harbored by the European common mole (Talpa europaea)</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2009-07-07</date><risdate>2009</risdate><volume>4</volume><issue>7</issue><spage>e6149</spage><epage>e6149</epage><pages>e6149-e6149</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The discovery of genetically distinct hantaviruses in shrews (Order Soricomorpha, Family Soricidae) from widely separated geographic regions challenges the hypothesis that rodents (Order Rodentia, Family Muridae and Cricetidae) are the primordial reservoir hosts of hantaviruses and also predicts that other soricomorphs harbor hantaviruses. Recently, novel hantavirus genomes have been detected in moles of the Family Talpidae, including the Japanese shrew mole (Urotrichus talpoides) and American shrew mole (Neurotrichus gibbsii). We present new insights into the evolutionary history of hantaviruses gained from a highly divergent hantavirus, designated Nova virus (NVAV), identified in the European common mole (Talpa europaea) captured in Hungary.
Pair-wise alignment and comparison of the full-length S- and L-genomic segments indicated moderately low sequence similarity of 54-65% and 46-63% at the nucleotide and amino acid levels, respectively, between NVAV and representative rodent- and soricid-borne hantaviruses. Despite the high degree of sequence divergence, the predicted secondary structure of the NVAV nucleocapsid protein exhibited the characteristic coiled-coil domains at the amino-terminal end, and the L-segment motifs, typically found in hantaviruses, were well conserved. Phylogenetic analyses, using maximum-likelihood and Bayesian methods, showed that NVAV formed a distinct clade that was evolutionarily distant from all other hantaviruses.
Newly identified hantaviruses harbored by shrews and moles support long-standing virus-host relationships and suggest that ancestral soricomorphs, rather than rodents, may have been the early or original mammalian hosts.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>19582155</pmid><doi>10.1371/journal.pone.0006149</doi><tpages>e6149</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2009-07, Vol.4 (7), p.e6149-e6149 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1290674153 |
source | Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Amino Acid Sequence Amino acids Analysis Animals Base Sequence Bayesian analysis Biogeography Biological Evolution Biology Blarina brevicauda Cricetidae Cytochrome Divergence DNA Primers Evolutionary genetics Genes Genomes Genomics Hantavirus Infectious diseases Infectious Diseases/Viral Infections Molecular Sequence Data Moles - virology Muridae Museums National parks Neurotrichus gibbsii Nucleocapsids Orthohantavirus - classification Orthohantavirus - genetics Orthohantavirus - isolation & purification Phylogenetics Phylogeny Protein structure Protein Structure, Secondary Proteins Reverse Transcriptase Polymerase Chain Reaction Rodentia Rodents Secondary structure Sequence Homology, Amino Acid Small mammals Soricidae Talpa europaea Talpidae Urotrichus talpoides Viral Proteins - chemistry Virology/Emerging Viral Diseases Virology/Virus Evolution and Symbiosis Viruses |
title | Evolutionary insights from a genetically divergent hantavirus harbored by the European common mole (Talpa europaea) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T12%3A42%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolutionary%20insights%20from%20a%20genetically%20divergent%20hantavirus%20harbored%20by%20the%20European%20common%20mole%20(Talpa%20europaea)&rft.jtitle=PloS%20one&rft.au=Kang,%20Hae%20Ji&rft.date=2009-07-07&rft.volume=4&rft.issue=7&rft.spage=e6149&rft.epage=e6149&rft.pages=e6149-e6149&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0006149&rft_dat=%3Cgale_plos_%3EA472977975%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1290674153&rft_id=info:pmid/19582155&rft_galeid=A472977975&rft_doaj_id=oai_doaj_org_article_fa17677f183149d6b29ea05db60965e4&rfr_iscdi=true |