Reliable activation of immature neurons in the adult hippocampus
Neurons born in the adult dentate gyrus develop, mature, and connect over a long interval that can last from six to eight weeks. It has been proposed that, during this period, developing neurons play a relevant role in hippocampal signal processing owing to their distinctive electrical properties. H...
Gespeichert in:
Veröffentlicht in: | PloS one 2009-04, Vol.4 (4), p.e5320-e5320 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e5320 |
---|---|
container_issue | 4 |
container_start_page | e5320 |
container_title | PloS one |
container_volume | 4 |
creator | Mongiat, Lucas A Espósito, M Soledad Lombardi, Gabriela Schinder, Alejandro F |
description | Neurons born in the adult dentate gyrus develop, mature, and connect over a long interval that can last from six to eight weeks. It has been proposed that, during this period, developing neurons play a relevant role in hippocampal signal processing owing to their distinctive electrical properties. However, it has remained unknown whether immature neurons can be recruited into a network before synaptic and functional maturity have been achieved. To address this question, we used retroviral expression of green fluorescent protein to identify developing granule cells of the adult mouse hippocampus and investigate the balance of afferent excitation, intrinsic excitability, and firing behavior by patch clamp recordings in acute slices. We found that glutamatergic inputs onto young neurons are significantly weaker than those of mature cells, yet stimulation of cortical excitatory axons elicits a similar spiking probability in neurons at either developmental stage. Young neurons are highly efficient in transducing ionic currents into membrane depolarization due to their high input resistance, which decreases substantially in mature neurons as the inward rectifier potassium (Kir) conductance increases. Pharmacological blockade of Kir channels in mature neurons mimics the high excitability characteristic of young neurons. Conversely, Kir overexpression induces mature-like firing properties in young neurons. Therefore, the differences in excitatory drive of young and mature neurons are compensated by changes in membrane excitability that render an equalized firing activity. These observations demonstrate that the adult hippocampus continuously generates a population of highly excitable young neurons capable of information processing. |
doi_str_mv | 10.1371/journal.pone.0005320 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1290652555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A473191312</galeid><doaj_id>oai_doaj_org_article_a1b1e97837f1409d8db374fc1843e101</doaj_id><sourcerecordid>A473191312</sourcerecordid><originalsourceid>FETCH-LOGICAL-c838t-d5dc91441dfca7646beef0571e248fa6fb1dda94f9258e277c178bbdf9545a873</originalsourceid><addsrcrecordid>eNqNk1uL1DAUx4so7rr6DUQLwoIPMyZN2iQv4rJ4GVhYWC-vIc1lJkPa1CRd9NubOlWnsqDkIeGc3_kn55ycongKwRoiAl_t_Rh64daD7_UaAFCjCtwrTiFD1aqpALp_dD4pHsW4nxjaNA-Lk-xgDBJ0Wry50c6K1ulSyGRvRbK-L70pbdeJNAZd9noMvo-l7cu0y5QaXSp3dhi8FN0wxsfFAyNc1E_m_az4_O7tp8sPq6vr95vLi6uVpIimlaqVZBBjqIwUpMFNq7UBNYG6wtSIxrRQKcGwYVVNdUWIhIS2rTKsxrWgBJ0Vzw-6g_ORz8lHDisGmrqq6zoTmwOhvNjzIdhOhO_cC8t_GnzYchGSlU5zAVuoGaGIGIgBU1S1iGAjIcVIQwCz1uv5trHttJK6T0G4hejS09sd3_pbXjUEYEazwPksEPzXUcfEOxuldk702o-RNwRSMLXmX2AFGgBBgzL44i_w7iLM1FbkPG1vfH6enCT5BSYIMohglan1HVReSndW5g9lbLYvAl4uAjKT9Le0FWOMfPPx5v_Z6y9L9vyI3Wnh0i56N07fMC5BfABl8DEGbX73AgI-zcOvavBpHvg8Dzns2XEf_wTNA4B-AG5CBEs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1290652555</pqid></control><display><type>article</type><title>Reliable activation of immature neurons in the adult hippocampus</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Mongiat, Lucas A ; Espósito, M Soledad ; Lombardi, Gabriela ; Schinder, Alejandro F</creator><contributor>Reh, Thomas A.</contributor><creatorcontrib>Mongiat, Lucas A ; Espósito, M Soledad ; Lombardi, Gabriela ; Schinder, Alejandro F ; Reh, Thomas A.</creatorcontrib><description>Neurons born in the adult dentate gyrus develop, mature, and connect over a long interval that can last from six to eight weeks. It has been proposed that, during this period, developing neurons play a relevant role in hippocampal signal processing owing to their distinctive electrical properties. However, it has remained unknown whether immature neurons can be recruited into a network before synaptic and functional maturity have been achieved. To address this question, we used retroviral expression of green fluorescent protein to identify developing granule cells of the adult mouse hippocampus and investigate the balance of afferent excitation, intrinsic excitability, and firing behavior by patch clamp recordings in acute slices. We found that glutamatergic inputs onto young neurons are significantly weaker than those of mature cells, yet stimulation of cortical excitatory axons elicits a similar spiking probability in neurons at either developmental stage. Young neurons are highly efficient in transducing ionic currents into membrane depolarization due to their high input resistance, which decreases substantially in mature neurons as the inward rectifier potassium (Kir) conductance increases. Pharmacological blockade of Kir channels in mature neurons mimics the high excitability characteristic of young neurons. Conversely, Kir overexpression induces mature-like firing properties in young neurons. Therefore, the differences in excitatory drive of young and mature neurons are compensated by changes in membrane excitability that render an equalized firing activity. These observations demonstrate that the adult hippocampus continuously generates a population of highly excitable young neurons capable of information processing.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0005320</identifier><identifier>PMID: 19399173</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Action Potentials ; Animals ; Axons ; Brain ; Brain slice preparation ; Cell Differentiation ; Conductance ; Cortex ; Data processing ; Dentate gyrus ; Depolarization ; Developmental Biology/Stem Cells ; Electric properties ; Electrical properties ; Electrophysiological Phenomena ; Excitability ; Excitation ; Female ; Firing ; Firing pattern ; Fluorescence ; Glutamatergic transmission ; Glutamine - metabolism ; Granule cells ; Green fluorescent protein ; Green Fluorescent Proteins - genetics ; Hippocampus ; Hippocampus - cytology ; Hippocampus - physiology ; Information processing ; Laboratories ; Membrane potential ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Nervous system ; Neurons ; Neurons - cytology ; Neurons - physiology ; Neuroscience ; Neuroscience/Neurobiology of Disease and Regeneration ; Neuroscience/Neurodevelopment ; Patch-Clamp Techniques ; Pharmacology ; Physiology/Neural Homeostasis ; Potassium ; Potassium channels (inwardly-rectifying) ; Potassium Channels, Inwardly Rectifying - metabolism ; Potassium conductance ; Recombinant Proteins - genetics ; Resistance ; Rodents ; Sensory neurons ; Signal processing ; Studies</subject><ispartof>PloS one, 2009-04, Vol.4 (4), p.e5320-e5320</ispartof><rights>COPYRIGHT 2009 Public Library of Science</rights><rights>2009 Mongiat et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Mongiat et al. 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c838t-d5dc91441dfca7646beef0571e248fa6fb1dda94f9258e277c178bbdf9545a873</citedby><cites>FETCH-LOGICAL-c838t-d5dc91441dfca7646beef0571e248fa6fb1dda94f9258e277c178bbdf9545a873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2670498/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2670498/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2929,23868,27926,27927,53793,53795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19399173$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Reh, Thomas A.</contributor><creatorcontrib>Mongiat, Lucas A</creatorcontrib><creatorcontrib>Espósito, M Soledad</creatorcontrib><creatorcontrib>Lombardi, Gabriela</creatorcontrib><creatorcontrib>Schinder, Alejandro F</creatorcontrib><title>Reliable activation of immature neurons in the adult hippocampus</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Neurons born in the adult dentate gyrus develop, mature, and connect over a long interval that can last from six to eight weeks. It has been proposed that, during this period, developing neurons play a relevant role in hippocampal signal processing owing to their distinctive electrical properties. However, it has remained unknown whether immature neurons can be recruited into a network before synaptic and functional maturity have been achieved. To address this question, we used retroviral expression of green fluorescent protein to identify developing granule cells of the adult mouse hippocampus and investigate the balance of afferent excitation, intrinsic excitability, and firing behavior by patch clamp recordings in acute slices. We found that glutamatergic inputs onto young neurons are significantly weaker than those of mature cells, yet stimulation of cortical excitatory axons elicits a similar spiking probability in neurons at either developmental stage. Young neurons are highly efficient in transducing ionic currents into membrane depolarization due to their high input resistance, which decreases substantially in mature neurons as the inward rectifier potassium (Kir) conductance increases. Pharmacological blockade of Kir channels in mature neurons mimics the high excitability characteristic of young neurons. Conversely, Kir overexpression induces mature-like firing properties in young neurons. Therefore, the differences in excitatory drive of young and mature neurons are compensated by changes in membrane excitability that render an equalized firing activity. These observations demonstrate that the adult hippocampus continuously generates a population of highly excitable young neurons capable of information processing.</description><subject>Action Potentials</subject><subject>Animals</subject><subject>Axons</subject><subject>Brain</subject><subject>Brain slice preparation</subject><subject>Cell Differentiation</subject><subject>Conductance</subject><subject>Cortex</subject><subject>Data processing</subject><subject>Dentate gyrus</subject><subject>Depolarization</subject><subject>Developmental Biology/Stem Cells</subject><subject>Electric properties</subject><subject>Electrical properties</subject><subject>Electrophysiological Phenomena</subject><subject>Excitability</subject><subject>Excitation</subject><subject>Female</subject><subject>Firing</subject><subject>Firing pattern</subject><subject>Fluorescence</subject><subject>Glutamatergic transmission</subject><subject>Glutamine - metabolism</subject><subject>Granule cells</subject><subject>Green fluorescent protein</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Hippocampus</subject><subject>Hippocampus - cytology</subject><subject>Hippocampus - physiology</subject><subject>Information processing</subject><subject>Laboratories</subject><subject>Membrane potential</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Nervous system</subject><subject>Neurons</subject><subject>Neurons - cytology</subject><subject>Neurons - physiology</subject><subject>Neuroscience</subject><subject>Neuroscience/Neurobiology of Disease and Regeneration</subject><subject>Neuroscience/Neurodevelopment</subject><subject>Patch-Clamp Techniques</subject><subject>Pharmacology</subject><subject>Physiology/Neural Homeostasis</subject><subject>Potassium</subject><subject>Potassium channels (inwardly-rectifying)</subject><subject>Potassium Channels, Inwardly Rectifying - metabolism</subject><subject>Potassium conductance</subject><subject>Recombinant Proteins - genetics</subject><subject>Resistance</subject><subject>Rodents</subject><subject>Sensory neurons</subject><subject>Signal processing</subject><subject>Studies</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1uL1DAUx4so7rr6DUQLwoIPMyZN2iQv4rJ4GVhYWC-vIc1lJkPa1CRd9NubOlWnsqDkIeGc3_kn55ycongKwRoiAl_t_Rh64daD7_UaAFCjCtwrTiFD1aqpALp_dD4pHsW4nxjaNA-Lk-xgDBJ0Wry50c6K1ulSyGRvRbK-L70pbdeJNAZd9noMvo-l7cu0y5QaXSp3dhi8FN0wxsfFAyNc1E_m_az4_O7tp8sPq6vr95vLi6uVpIimlaqVZBBjqIwUpMFNq7UBNYG6wtSIxrRQKcGwYVVNdUWIhIS2rTKsxrWgBJ0Vzw-6g_ORz8lHDisGmrqq6zoTmwOhvNjzIdhOhO_cC8t_GnzYchGSlU5zAVuoGaGIGIgBU1S1iGAjIcVIQwCz1uv5trHttJK6T0G4hejS09sd3_pbXjUEYEazwPksEPzXUcfEOxuldk702o-RNwRSMLXmX2AFGgBBgzL44i_w7iLM1FbkPG1vfH6enCT5BSYIMohglan1HVReSndW5g9lbLYvAl4uAjKT9Le0FWOMfPPx5v_Z6y9L9vyI3Wnh0i56N07fMC5BfABl8DEGbX73AgI-zcOvavBpHvg8Dzns2XEf_wTNA4B-AG5CBEs</recordid><startdate>20090428</startdate><enddate>20090428</enddate><creator>Mongiat, Lucas A</creator><creator>Espósito, M Soledad</creator><creator>Lombardi, Gabriela</creator><creator>Schinder, Alejandro F</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7TK</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20090428</creationdate><title>Reliable activation of immature neurons in the adult hippocampus</title><author>Mongiat, Lucas A ; Espósito, M Soledad ; Lombardi, Gabriela ; Schinder, Alejandro F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c838t-d5dc91441dfca7646beef0571e248fa6fb1dda94f9258e277c178bbdf9545a873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Action Potentials</topic><topic>Animals</topic><topic>Axons</topic><topic>Brain</topic><topic>Brain slice preparation</topic><topic>Cell Differentiation</topic><topic>Conductance</topic><topic>Cortex</topic><topic>Data processing</topic><topic>Dentate gyrus</topic><topic>Depolarization</topic><topic>Developmental Biology/Stem Cells</topic><topic>Electric properties</topic><topic>Electrical properties</topic><topic>Electrophysiological Phenomena</topic><topic>Excitability</topic><topic>Excitation</topic><topic>Female</topic><topic>Firing</topic><topic>Firing pattern</topic><topic>Fluorescence</topic><topic>Glutamatergic transmission</topic><topic>Glutamine - metabolism</topic><topic>Granule cells</topic><topic>Green fluorescent protein</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Hippocampus</topic><topic>Hippocampus - cytology</topic><topic>Hippocampus - physiology</topic><topic>Information processing</topic><topic>Laboratories</topic><topic>Membrane potential</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Nervous system</topic><topic>Neurons</topic><topic>Neurons - cytology</topic><topic>Neurons - physiology</topic><topic>Neuroscience</topic><topic>Neuroscience/Neurobiology of Disease and Regeneration</topic><topic>Neuroscience/Neurodevelopment</topic><topic>Patch-Clamp Techniques</topic><topic>Pharmacology</topic><topic>Physiology/Neural Homeostasis</topic><topic>Potassium</topic><topic>Potassium channels (inwardly-rectifying)</topic><topic>Potassium Channels, Inwardly Rectifying - metabolism</topic><topic>Potassium conductance</topic><topic>Recombinant Proteins - genetics</topic><topic>Resistance</topic><topic>Rodents</topic><topic>Sensory neurons</topic><topic>Signal processing</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mongiat, Lucas A</creatorcontrib><creatorcontrib>Espósito, M Soledad</creatorcontrib><creatorcontrib>Lombardi, Gabriela</creatorcontrib><creatorcontrib>Schinder, Alejandro F</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mongiat, Lucas A</au><au>Espósito, M Soledad</au><au>Lombardi, Gabriela</au><au>Schinder, Alejandro F</au><au>Reh, Thomas A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reliable activation of immature neurons in the adult hippocampus</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2009-04-28</date><risdate>2009</risdate><volume>4</volume><issue>4</issue><spage>e5320</spage><epage>e5320</epage><pages>e5320-e5320</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Neurons born in the adult dentate gyrus develop, mature, and connect over a long interval that can last from six to eight weeks. It has been proposed that, during this period, developing neurons play a relevant role in hippocampal signal processing owing to their distinctive electrical properties. However, it has remained unknown whether immature neurons can be recruited into a network before synaptic and functional maturity have been achieved. To address this question, we used retroviral expression of green fluorescent protein to identify developing granule cells of the adult mouse hippocampus and investigate the balance of afferent excitation, intrinsic excitability, and firing behavior by patch clamp recordings in acute slices. We found that glutamatergic inputs onto young neurons are significantly weaker than those of mature cells, yet stimulation of cortical excitatory axons elicits a similar spiking probability in neurons at either developmental stage. Young neurons are highly efficient in transducing ionic currents into membrane depolarization due to their high input resistance, which decreases substantially in mature neurons as the inward rectifier potassium (Kir) conductance increases. Pharmacological blockade of Kir channels in mature neurons mimics the high excitability characteristic of young neurons. Conversely, Kir overexpression induces mature-like firing properties in young neurons. Therefore, the differences in excitatory drive of young and mature neurons are compensated by changes in membrane excitability that render an equalized firing activity. These observations demonstrate that the adult hippocampus continuously generates a population of highly excitable young neurons capable of information processing.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>19399173</pmid><doi>10.1371/journal.pone.0005320</doi><tpages>e5320</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2009-04, Vol.4 (4), p.e5320-e5320 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1290652555 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Action Potentials Animals Axons Brain Brain slice preparation Cell Differentiation Conductance Cortex Data processing Dentate gyrus Depolarization Developmental Biology/Stem Cells Electric properties Electrical properties Electrophysiological Phenomena Excitability Excitation Female Firing Firing pattern Fluorescence Glutamatergic transmission Glutamine - metabolism Granule cells Green fluorescent protein Green Fluorescent Proteins - genetics Hippocampus Hippocampus - cytology Hippocampus - physiology Information processing Laboratories Membrane potential Mice Mice, Inbred C57BL Mice, Transgenic Nervous system Neurons Neurons - cytology Neurons - physiology Neuroscience Neuroscience/Neurobiology of Disease and Regeneration Neuroscience/Neurodevelopment Patch-Clamp Techniques Pharmacology Physiology/Neural Homeostasis Potassium Potassium channels (inwardly-rectifying) Potassium Channels, Inwardly Rectifying - metabolism Potassium conductance Recombinant Proteins - genetics Resistance Rodents Sensory neurons Signal processing Studies |
title | Reliable activation of immature neurons in the adult hippocampus |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T08%3A36%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reliable%20activation%20of%20immature%20neurons%20in%20the%20adult%20hippocampus&rft.jtitle=PloS%20one&rft.au=Mongiat,%20Lucas%20A&rft.date=2009-04-28&rft.volume=4&rft.issue=4&rft.spage=e5320&rft.epage=e5320&rft.pages=e5320-e5320&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0005320&rft_dat=%3Cgale_plos_%3EA473191312%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1290652555&rft_id=info:pmid/19399173&rft_galeid=A473191312&rft_doaj_id=oai_doaj_org_article_a1b1e97837f1409d8db374fc1843e101&rfr_iscdi=true |