Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression
Tumor associated fibroblasts (TAF), are essential for tumor progression providing both a functional and structural supportive environment. TAF, known as activated fibroblasts, have an established biological impact on tumorigenesis as matrix synthesizing or matrix degrading cells, contractile cells,...
Gespeichert in:
Veröffentlicht in: | PloS one 2009-04, Vol.4 (4), p.e4992-e4992 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e4992 |
---|---|
container_issue | 4 |
container_start_page | e4992 |
container_title | PloS one |
container_volume | 4 |
creator | Spaeth, Erika L Dembinski, Jennifer L Sasser, A Kate Watson, Keri Klopp, Ann Hall, Brett Andreeff, Michael Marini, Frank |
description | Tumor associated fibroblasts (TAF), are essential for tumor progression providing both a functional and structural supportive environment. TAF, known as activated fibroblasts, have an established biological impact on tumorigenesis as matrix synthesizing or matrix degrading cells, contractile cells, and even blood vessel associated cells. The production of growth factors, cytokines, chemokines, matrix-degrading enzymes, and immunomodulatory mechanisms by these cells augment tumor progression by providing a suitable environment. There are several suggested origins of the TAF including tissue-resident, circulating, and epithelial-to-mesenchymal-transitioned cells.
We provide evidence that TAF are derived from mesenchymal stem cells (MSC) that acquire a TAF phenotype following exposure to or systemic recruitment into adenocarcinoma xenograft models including breast, pancreatic, and ovarian. We define the MSC derived TAF in a xenograft ovarian carcinoma model by the immunohistochemical presence of 1) fibroblast specific protein and fibroblast activated protein; 2) markers phenotypically associated with aggressiveness, including tenascin-c, thrombospondin-1, and stromelysin-1; 3) production of pro-tumorigenic growth factors including hepatocyte growth factor, epidermal growth factor, and interleukin-6; and 4) factors indicative of vascularization, including alpha-smooth muscle actin, desmin, and vascular endothelial growth factor. We demonstrate that under long-term tumor conditioning in vitro, MSC express TAF-like proteins. Additionally, human MSC but not murine MSC stimulated tumor growth primarily through the paracrine production of secreted IL6.
Our results suggest the dependence of in vitro Skov-3 tumor cell proliferation is due to the presence of tumor-stimulated MSC secreted IL6. The subsequent TAF phenotype arises from the MSC which ultimately promotes tumor growth through the contribution of microvascularization, stromal networks, and the production of tumor-stimulating paracrine factors. |
doi_str_mv | 10.1371/journal.pone.0004992 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1290640388</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A473269592</galeid><doaj_id>oai_doaj_org_article_762d26e958824554bc306a61c5bb7189</doaj_id><sourcerecordid>A473269592</sourcerecordid><originalsourceid>FETCH-LOGICAL-c728t-fd6f6424d8330d6bc954f3046d91e57e890c7c86280ddf5b988e7d08673c36f63</originalsourceid><addsrcrecordid>eNqNk9tu1DAQhiMEoqXwBggiIVXiYhcfYse5QaoqDisVVeJ0azn2ZNeLE29tp7QPwHvjdBfYRVwgX9ia-eYfe8ZTFE8xmmNa41drP4ZBufnGDzBHCFVNQ-4Vx7ihZMYJovf3zkfFoxjXCDEqOH9YHGUHIxVFx8WPDxBh0KvbXrkyJuhLDc6VKagh2mT9UCZfprH3YaZi9NqqBKbsbBt861RMsdR-SMG2Y4I4sXeuaxX16FQoB0jfffhWws1mEsxyajBbvXIT_DJAnKyPiwedchGe7PaT4svbN5_P388uLt8tzs8uZromIs06wztekcoISpHhrW5Y1VFUcdNgYDWIBulaC04EMqZjbSME1AYJXlNNcyg9KZ5vdTfOR7mrYJSYNIhXiAqRicWWMF6t5SbYXoVb6ZWVdwYfllKFZLUDWXNiCIeGCUEqxqpWU8QVx5q1bY1Fk7Ve77KNbQ9GQy6Ucgeih57BruTSX0vCeW4xyQKnO4Hgr0aISfY2Tv1RA_gxSl5jjCljGXzxF_jvt8231FLl69uh8zmrzstAb3MbobPZflbVlPCGNVP-lwcBU6vhJi3VGKNcfPr4_-zl10P2dI9dgXJpFb0bp_8WD8FqC-rgYwzQ_S4eRnKagl_vlNMUyN0U5LBn-4X_E7T79vQnyGAGOQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1290640388</pqid></control><display><type>article</type><title>Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Spaeth, Erika L ; Dembinski, Jennifer L ; Sasser, A Kate ; Watson, Keri ; Klopp, Ann ; Hall, Brett ; Andreeff, Michael ; Marini, Frank</creator><creatorcontrib>Spaeth, Erika L ; Dembinski, Jennifer L ; Sasser, A Kate ; Watson, Keri ; Klopp, Ann ; Hall, Brett ; Andreeff, Michael ; Marini, Frank</creatorcontrib><description>Tumor associated fibroblasts (TAF), are essential for tumor progression providing both a functional and structural supportive environment. TAF, known as activated fibroblasts, have an established biological impact on tumorigenesis as matrix synthesizing or matrix degrading cells, contractile cells, and even blood vessel associated cells. The production of growth factors, cytokines, chemokines, matrix-degrading enzymes, and immunomodulatory mechanisms by these cells augment tumor progression by providing a suitable environment. There are several suggested origins of the TAF including tissue-resident, circulating, and epithelial-to-mesenchymal-transitioned cells.
We provide evidence that TAF are derived from mesenchymal stem cells (MSC) that acquire a TAF phenotype following exposure to or systemic recruitment into adenocarcinoma xenograft models including breast, pancreatic, and ovarian. We define the MSC derived TAF in a xenograft ovarian carcinoma model by the immunohistochemical presence of 1) fibroblast specific protein and fibroblast activated protein; 2) markers phenotypically associated with aggressiveness, including tenascin-c, thrombospondin-1, and stromelysin-1; 3) production of pro-tumorigenic growth factors including hepatocyte growth factor, epidermal growth factor, and interleukin-6; and 4) factors indicative of vascularization, including alpha-smooth muscle actin, desmin, and vascular endothelial growth factor. We demonstrate that under long-term tumor conditioning in vitro, MSC express TAF-like proteins. Additionally, human MSC but not murine MSC stimulated tumor growth primarily through the paracrine production of secreted IL6.
Our results suggest the dependence of in vitro Skov-3 tumor cell proliferation is due to the presence of tumor-stimulated MSC secreted IL6. The subsequent TAF phenotype arises from the MSC which ultimately promotes tumor growth through the contribution of microvascularization, stromal networks, and the production of tumor-stimulating paracrine factors.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0004992</identifier><identifier>PMID: 19352430</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Actin ; Adenocarcinoma ; Analysis ; Angiogenesis ; Animal models ; Animals ; Bone marrow ; Brain cancer ; Breast cancer ; Cancer ; Cell Biology ; Cell Division ; Cell Lineage ; Cell proliferation ; Chemokines ; Cytokines ; Desmin ; Development and progression ; Disease Progression ; Enzymes ; Epidermal growth factor ; Epidermal growth factors ; Female ; Fibroblasts ; Fibroblasts - cytology ; Gene expression ; Growth factors ; Hematology ; Hepatocyte growth factor ; Humans ; Immunomodulation ; Interleukin ; Interleukin 6 ; Interleukins ; Mesenchymal stem cells ; Mesenchymal Stromal Cells - cytology ; Mesenchyme ; Metastasis ; Motility ; Muscle contraction ; Muscle proteins ; Neovascularization ; Oncology ; Ovarian cancer ; Ovarian carcinoma ; Ovarian Neoplasms - pathology ; Pancreas ; Paracrine signalling ; Pathology ; Pediatrics ; Population ; Prostate cancer ; Proteins ; Recruitment ; Rodents ; Smooth muscle ; Stem cell transplantation ; Stem cells ; Stromelysin ; Transplantation, Heterologous ; Tumors ; Vascular endothelial growth factor ; Xenografts</subject><ispartof>PloS one, 2009-04, Vol.4 (4), p.e4992-e4992</ispartof><rights>COPYRIGHT 2009 Public Library of Science</rights><rights>2009 Spaeth et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Spaeth et al. 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c728t-fd6f6424d8330d6bc954f3046d91e57e890c7c86280ddf5b988e7d08673c36f63</citedby><cites>FETCH-LOGICAL-c728t-fd6f6424d8330d6bc954f3046d91e57e890c7c86280ddf5b988e7d08673c36f63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2661372/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2661372/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19352430$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Spaeth, Erika L</creatorcontrib><creatorcontrib>Dembinski, Jennifer L</creatorcontrib><creatorcontrib>Sasser, A Kate</creatorcontrib><creatorcontrib>Watson, Keri</creatorcontrib><creatorcontrib>Klopp, Ann</creatorcontrib><creatorcontrib>Hall, Brett</creatorcontrib><creatorcontrib>Andreeff, Michael</creatorcontrib><creatorcontrib>Marini, Frank</creatorcontrib><title>Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Tumor associated fibroblasts (TAF), are essential for tumor progression providing both a functional and structural supportive environment. TAF, known as activated fibroblasts, have an established biological impact on tumorigenesis as matrix synthesizing or matrix degrading cells, contractile cells, and even blood vessel associated cells. The production of growth factors, cytokines, chemokines, matrix-degrading enzymes, and immunomodulatory mechanisms by these cells augment tumor progression by providing a suitable environment. There are several suggested origins of the TAF including tissue-resident, circulating, and epithelial-to-mesenchymal-transitioned cells.
We provide evidence that TAF are derived from mesenchymal stem cells (MSC) that acquire a TAF phenotype following exposure to or systemic recruitment into adenocarcinoma xenograft models including breast, pancreatic, and ovarian. We define the MSC derived TAF in a xenograft ovarian carcinoma model by the immunohistochemical presence of 1) fibroblast specific protein and fibroblast activated protein; 2) markers phenotypically associated with aggressiveness, including tenascin-c, thrombospondin-1, and stromelysin-1; 3) production of pro-tumorigenic growth factors including hepatocyte growth factor, epidermal growth factor, and interleukin-6; and 4) factors indicative of vascularization, including alpha-smooth muscle actin, desmin, and vascular endothelial growth factor. We demonstrate that under long-term tumor conditioning in vitro, MSC express TAF-like proteins. Additionally, human MSC but not murine MSC stimulated tumor growth primarily through the paracrine production of secreted IL6.
Our results suggest the dependence of in vitro Skov-3 tumor cell proliferation is due to the presence of tumor-stimulated MSC secreted IL6. The subsequent TAF phenotype arises from the MSC which ultimately promotes tumor growth through the contribution of microvascularization, stromal networks, and the production of tumor-stimulating paracrine factors.</description><subject>Actin</subject><subject>Adenocarcinoma</subject><subject>Analysis</subject><subject>Angiogenesis</subject><subject>Animal models</subject><subject>Animals</subject><subject>Bone marrow</subject><subject>Brain cancer</subject><subject>Breast cancer</subject><subject>Cancer</subject><subject>Cell Biology</subject><subject>Cell Division</subject><subject>Cell Lineage</subject><subject>Cell proliferation</subject><subject>Chemokines</subject><subject>Cytokines</subject><subject>Desmin</subject><subject>Development and progression</subject><subject>Disease Progression</subject><subject>Enzymes</subject><subject>Epidermal growth factor</subject><subject>Epidermal growth factors</subject><subject>Female</subject><subject>Fibroblasts</subject><subject>Fibroblasts - cytology</subject><subject>Gene expression</subject><subject>Growth factors</subject><subject>Hematology</subject><subject>Hepatocyte growth factor</subject><subject>Humans</subject><subject>Immunomodulation</subject><subject>Interleukin</subject><subject>Interleukin 6</subject><subject>Interleukins</subject><subject>Mesenchymal stem cells</subject><subject>Mesenchymal Stromal Cells - cytology</subject><subject>Mesenchyme</subject><subject>Metastasis</subject><subject>Motility</subject><subject>Muscle contraction</subject><subject>Muscle proteins</subject><subject>Neovascularization</subject><subject>Oncology</subject><subject>Ovarian cancer</subject><subject>Ovarian carcinoma</subject><subject>Ovarian Neoplasms - pathology</subject><subject>Pancreas</subject><subject>Paracrine signalling</subject><subject>Pathology</subject><subject>Pediatrics</subject><subject>Population</subject><subject>Prostate cancer</subject><subject>Proteins</subject><subject>Recruitment</subject><subject>Rodents</subject><subject>Smooth muscle</subject><subject>Stem cell transplantation</subject><subject>Stem cells</subject><subject>Stromelysin</subject><subject>Transplantation, Heterologous</subject><subject>Tumors</subject><subject>Vascular endothelial growth factor</subject><subject>Xenografts</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9tu1DAQhiMEoqXwBggiIVXiYhcfYse5QaoqDisVVeJ0azn2ZNeLE29tp7QPwHvjdBfYRVwgX9ia-eYfe8ZTFE8xmmNa41drP4ZBufnGDzBHCFVNQ-4Vx7ihZMYJovf3zkfFoxjXCDEqOH9YHGUHIxVFx8WPDxBh0KvbXrkyJuhLDc6VKagh2mT9UCZfprH3YaZi9NqqBKbsbBt861RMsdR-SMG2Y4I4sXeuaxX16FQoB0jfffhWws1mEsxyajBbvXIT_DJAnKyPiwedchGe7PaT4svbN5_P388uLt8tzs8uZromIs06wztekcoISpHhrW5Y1VFUcdNgYDWIBulaC04EMqZjbSME1AYJXlNNcyg9KZ5vdTfOR7mrYJSYNIhXiAqRicWWMF6t5SbYXoVb6ZWVdwYfllKFZLUDWXNiCIeGCUEqxqpWU8QVx5q1bY1Fk7Ve77KNbQ9GQy6Ucgeih57BruTSX0vCeW4xyQKnO4Hgr0aISfY2Tv1RA_gxSl5jjCljGXzxF_jvt8231FLl69uh8zmrzstAb3MbobPZflbVlPCGNVP-lwcBU6vhJi3VGKNcfPr4_-zl10P2dI9dgXJpFb0bp_8WD8FqC-rgYwzQ_S4eRnKagl_vlNMUyN0U5LBn-4X_E7T79vQnyGAGOQ</recordid><startdate>20090407</startdate><enddate>20090407</enddate><creator>Spaeth, Erika L</creator><creator>Dembinski, Jennifer L</creator><creator>Sasser, A Kate</creator><creator>Watson, Keri</creator><creator>Klopp, Ann</creator><creator>Hall, Brett</creator><creator>Andreeff, Michael</creator><creator>Marini, Frank</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20090407</creationdate><title>Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression</title><author>Spaeth, Erika L ; Dembinski, Jennifer L ; Sasser, A Kate ; Watson, Keri ; Klopp, Ann ; Hall, Brett ; Andreeff, Michael ; Marini, Frank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c728t-fd6f6424d8330d6bc954f3046d91e57e890c7c86280ddf5b988e7d08673c36f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Actin</topic><topic>Adenocarcinoma</topic><topic>Analysis</topic><topic>Angiogenesis</topic><topic>Animal models</topic><topic>Animals</topic><topic>Bone marrow</topic><topic>Brain cancer</topic><topic>Breast cancer</topic><topic>Cancer</topic><topic>Cell Biology</topic><topic>Cell Division</topic><topic>Cell Lineage</topic><topic>Cell proliferation</topic><topic>Chemokines</topic><topic>Cytokines</topic><topic>Desmin</topic><topic>Development and progression</topic><topic>Disease Progression</topic><topic>Enzymes</topic><topic>Epidermal growth factor</topic><topic>Epidermal growth factors</topic><topic>Female</topic><topic>Fibroblasts</topic><topic>Fibroblasts - cytology</topic><topic>Gene expression</topic><topic>Growth factors</topic><topic>Hematology</topic><topic>Hepatocyte growth factor</topic><topic>Humans</topic><topic>Immunomodulation</topic><topic>Interleukin</topic><topic>Interleukin 6</topic><topic>Interleukins</topic><topic>Mesenchymal stem cells</topic><topic>Mesenchymal Stromal Cells - cytology</topic><topic>Mesenchyme</topic><topic>Metastasis</topic><topic>Motility</topic><topic>Muscle contraction</topic><topic>Muscle proteins</topic><topic>Neovascularization</topic><topic>Oncology</topic><topic>Ovarian cancer</topic><topic>Ovarian carcinoma</topic><topic>Ovarian Neoplasms - pathology</topic><topic>Pancreas</topic><topic>Paracrine signalling</topic><topic>Pathology</topic><topic>Pediatrics</topic><topic>Population</topic><topic>Prostate cancer</topic><topic>Proteins</topic><topic>Recruitment</topic><topic>Rodents</topic><topic>Smooth muscle</topic><topic>Stem cell transplantation</topic><topic>Stem cells</topic><topic>Stromelysin</topic><topic>Transplantation, Heterologous</topic><topic>Tumors</topic><topic>Vascular endothelial growth factor</topic><topic>Xenografts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spaeth, Erika L</creatorcontrib><creatorcontrib>Dembinski, Jennifer L</creatorcontrib><creatorcontrib>Sasser, A Kate</creatorcontrib><creatorcontrib>Watson, Keri</creatorcontrib><creatorcontrib>Klopp, Ann</creatorcontrib><creatorcontrib>Hall, Brett</creatorcontrib><creatorcontrib>Andreeff, Michael</creatorcontrib><creatorcontrib>Marini, Frank</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Spaeth, Erika L</au><au>Dembinski, Jennifer L</au><au>Sasser, A Kate</au><au>Watson, Keri</au><au>Klopp, Ann</au><au>Hall, Brett</au><au>Andreeff, Michael</au><au>Marini, Frank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2009-04-07</date><risdate>2009</risdate><volume>4</volume><issue>4</issue><spage>e4992</spage><epage>e4992</epage><pages>e4992-e4992</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Tumor associated fibroblasts (TAF), are essential for tumor progression providing both a functional and structural supportive environment. TAF, known as activated fibroblasts, have an established biological impact on tumorigenesis as matrix synthesizing or matrix degrading cells, contractile cells, and even blood vessel associated cells. The production of growth factors, cytokines, chemokines, matrix-degrading enzymes, and immunomodulatory mechanisms by these cells augment tumor progression by providing a suitable environment. There are several suggested origins of the TAF including tissue-resident, circulating, and epithelial-to-mesenchymal-transitioned cells.
We provide evidence that TAF are derived from mesenchymal stem cells (MSC) that acquire a TAF phenotype following exposure to or systemic recruitment into adenocarcinoma xenograft models including breast, pancreatic, and ovarian. We define the MSC derived TAF in a xenograft ovarian carcinoma model by the immunohistochemical presence of 1) fibroblast specific protein and fibroblast activated protein; 2) markers phenotypically associated with aggressiveness, including tenascin-c, thrombospondin-1, and stromelysin-1; 3) production of pro-tumorigenic growth factors including hepatocyte growth factor, epidermal growth factor, and interleukin-6; and 4) factors indicative of vascularization, including alpha-smooth muscle actin, desmin, and vascular endothelial growth factor. We demonstrate that under long-term tumor conditioning in vitro, MSC express TAF-like proteins. Additionally, human MSC but not murine MSC stimulated tumor growth primarily through the paracrine production of secreted IL6.
Our results suggest the dependence of in vitro Skov-3 tumor cell proliferation is due to the presence of tumor-stimulated MSC secreted IL6. The subsequent TAF phenotype arises from the MSC which ultimately promotes tumor growth through the contribution of microvascularization, stromal networks, and the production of tumor-stimulating paracrine factors.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>19352430</pmid><doi>10.1371/journal.pone.0004992</doi><tpages>e4992</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2009-04, Vol.4 (4), p.e4992-e4992 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1290640388 |
source | Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Actin Adenocarcinoma Analysis Angiogenesis Animal models Animals Bone marrow Brain cancer Breast cancer Cancer Cell Biology Cell Division Cell Lineage Cell proliferation Chemokines Cytokines Desmin Development and progression Disease Progression Enzymes Epidermal growth factor Epidermal growth factors Female Fibroblasts Fibroblasts - cytology Gene expression Growth factors Hematology Hepatocyte growth factor Humans Immunomodulation Interleukin Interleukin 6 Interleukins Mesenchymal stem cells Mesenchymal Stromal Cells - cytology Mesenchyme Metastasis Motility Muscle contraction Muscle proteins Neovascularization Oncology Ovarian cancer Ovarian carcinoma Ovarian Neoplasms - pathology Pancreas Paracrine signalling Pathology Pediatrics Population Prostate cancer Proteins Recruitment Rodents Smooth muscle Stem cell transplantation Stem cells Stromelysin Transplantation, Heterologous Tumors Vascular endothelial growth factor Xenografts |
title | Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T10%3A22%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mesenchymal%20stem%20cell%20transition%20to%20tumor-associated%20fibroblasts%20contributes%20to%20fibrovascular%20network%20expansion%20and%20tumor%20progression&rft.jtitle=PloS%20one&rft.au=Spaeth,%20Erika%20L&rft.date=2009-04-07&rft.volume=4&rft.issue=4&rft.spage=e4992&rft.epage=e4992&rft.pages=e4992-e4992&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0004992&rft_dat=%3Cgale_plos_%3EA473269592%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1290640388&rft_id=info:pmid/19352430&rft_galeid=A473269592&rft_doaj_id=oai_doaj_org_article_762d26e958824554bc306a61c5bb7189&rfr_iscdi=true |