Uncovering the genetic landscape for multiple sleep-wake traits
Despite decades of research in defining sleep-wake properties in mammals, little is known about the nature or identity of genes that regulate sleep, a fundamental behaviour that in humans occupies about one-third of the entire lifespan. While genome-wide association studies in humans and quantitativ...
Gespeichert in:
Veröffentlicht in: | PloS one 2009-04, Vol.4 (4), p.e5161-e5161 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e5161 |
---|---|
container_issue | 4 |
container_start_page | e5161 |
container_title | PloS one |
container_volume | 4 |
creator | Winrow, Christopher J Williams, Deanna L Kasarskis, Andrew Millstein, Joshua Laposky, Aaron D Yang, He S Mrazek, Karrie Zhou, Lili Owens, Joseph R Radzicki, Daniel Preuss, Fabian Schadt, Eric E Shimomura, Kazuhiro Vitaterna, Martha H Zhang, Chunsheng Koblan, Kenneth S Renger, John J Turek, Fred W |
description | Despite decades of research in defining sleep-wake properties in mammals, little is known about the nature or identity of genes that regulate sleep, a fundamental behaviour that in humans occupies about one-third of the entire lifespan. While genome-wide association studies in humans and quantitative trait loci (QTL) analyses in mice have identified candidate genes for an increasing number of complex traits and genetic diseases, the resources and time-consuming process necessary for obtaining detailed quantitative data have made sleep seemingly intractable to similar large-scale genomic approaches. Here we describe analysis of 20 sleep-wake traits from 269 mice from a genetically segregating population that reveals 52 significant QTL representing a minimum of 20 genomic loci. While many (28) QTL affected a particular sleep-wake trait (e.g., amount of wake) across the full 24-hr day, other loci only affected a trait in the light or dark period while some loci had opposite effects on the trait during the light vs. dark. Analysis of a dataset for multiple sleep-wake traits led to previously undetected interactions (including the differential genetic control of number and duration of REM bouts), as well as possible shared genetic regulatory mechanisms for seemingly different unrelated sleep-wake traits (e.g., number of arousals and REM latency). Construction of a Bayesian network for sleep-wake traits and loci led to the identification of sub-networks of linkage not detectable in smaller data sets or limited single-trait analyses. For example, the network analyses revealed a novel chain of causal relationships between the chromosome 17@29cM QTL, total amount of wake, and duration of wake bouts in both light and dark periods that implies a mechanism whereby overall sleep need, mediated by this locus, in turn determines the length of each wake bout. Taken together, the present results reveal a complex genetic landscape underlying multiple sleep-wake traits and emphasize the need for a systems biology approach for elucidating the full extent of the genetic regulatory mechanisms of this complex and universal behavior. |
doi_str_mv | 10.1371/journal.pone.0005161 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1290571800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A473252342</galeid><doaj_id>oai_doaj_org_article_07ab346c6bae4cf8aa9a2d7a169e0ea0</doaj_id><sourcerecordid>A473252342</sourcerecordid><originalsourceid>FETCH-LOGICAL-c721t-5cdf5dddebd83dfed91a2399f2eedebe4e956e2bfa7688a7a0d5cafe52bf9bb83</originalsourceid><addsrcrecordid>eNqNk9-L1DAQx4so3nn6H4gWhAMfdk3SNm1elOPwx8LBgXq-hmky7ebMNrVJT_3vTd2qWzlQ8pAw85lvMjOZJHlMyZpmJX1x7cahA7vuXYdrQkhBOb2THFORsRVnJLt7cD5KHnh_HZms4vx-chQdnFDCj5NXV51yNziYrk3DFtMWOwxGpRY67RX0mDZuSHejDaa3mHqL2K--wmdMwwAm-IfJvQasx0fzfpJcvXn98fzd6uLy7eb87GKlSkbDqlC6KbTWWOsq0w1qQYFlQjQMMRoxR1FwZHUDJa8qKIHoQkGDRTSJuq6yk-TpXre3zss5dy8pE6QoaUVIJDZ7Qju4lv1gdjB8lw6M_GlwQythiKlZlKSEOsu54jVgrpoKQADTJVAukCBMWi_n28Z6h1phF7O1C9GlpzNb2bobyTjPBWdR4HQWGNyXEX2QO-MV2lhWdKOXvKSMiYr8E2SkEJzSSfHZX-DtRZipFmKepmtcfJ6aJOVZXmasYFk-aa1voeLSuDMq_qfGRPsi4PkiIDIBv4UWRu_l5sP7_2cvPy3Z0wN2i2DD1js7BuM6vwTzPagG5_2Aze9eUCKncfhVDTmNg5zHIYY9Oezjn6D5_2c_AJJSBq0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1290571800</pqid></control><display><type>article</type><title>Uncovering the genetic landscape for multiple sleep-wake traits</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Winrow, Christopher J ; Williams, Deanna L ; Kasarskis, Andrew ; Millstein, Joshua ; Laposky, Aaron D ; Yang, He S ; Mrazek, Karrie ; Zhou, Lili ; Owens, Joseph R ; Radzicki, Daniel ; Preuss, Fabian ; Schadt, Eric E ; Shimomura, Kazuhiro ; Vitaterna, Martha H ; Zhang, Chunsheng ; Koblan, Kenneth S ; Renger, John J ; Turek, Fred W</creator><contributor>Zaas, Aimee K.</contributor><creatorcontrib>Winrow, Christopher J ; Williams, Deanna L ; Kasarskis, Andrew ; Millstein, Joshua ; Laposky, Aaron D ; Yang, He S ; Mrazek, Karrie ; Zhou, Lili ; Owens, Joseph R ; Radzicki, Daniel ; Preuss, Fabian ; Schadt, Eric E ; Shimomura, Kazuhiro ; Vitaterna, Martha H ; Zhang, Chunsheng ; Koblan, Kenneth S ; Renger, John J ; Turek, Fred W ; Zaas, Aimee K.</creatorcontrib><description>Despite decades of research in defining sleep-wake properties in mammals, little is known about the nature or identity of genes that regulate sleep, a fundamental behaviour that in humans occupies about one-third of the entire lifespan. While genome-wide association studies in humans and quantitative trait loci (QTL) analyses in mice have identified candidate genes for an increasing number of complex traits and genetic diseases, the resources and time-consuming process necessary for obtaining detailed quantitative data have made sleep seemingly intractable to similar large-scale genomic approaches. Here we describe analysis of 20 sleep-wake traits from 269 mice from a genetically segregating population that reveals 52 significant QTL representing a minimum of 20 genomic loci. While many (28) QTL affected a particular sleep-wake trait (e.g., amount of wake) across the full 24-hr day, other loci only affected a trait in the light or dark period while some loci had opposite effects on the trait during the light vs. dark. Analysis of a dataset for multiple sleep-wake traits led to previously undetected interactions (including the differential genetic control of number and duration of REM bouts), as well as possible shared genetic regulatory mechanisms for seemingly different unrelated sleep-wake traits (e.g., number of arousals and REM latency). Construction of a Bayesian network for sleep-wake traits and loci led to the identification of sub-networks of linkage not detectable in smaller data sets or limited single-trait analyses. For example, the network analyses revealed a novel chain of causal relationships between the chromosome 17@29cM QTL, total amount of wake, and duration of wake bouts in both light and dark periods that implies a mechanism whereby overall sleep need, mediated by this locus, in turn determines the length of each wake bout. Taken together, the present results reveal a complex genetic landscape underlying multiple sleep-wake traits and emphasize the need for a systems biology approach for elucidating the full extent of the genetic regulatory mechanisms of this complex and universal behavior.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0005161</identifier><identifier>PMID: 19360106</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Analysis ; Animals ; Bayes Theorem ; Bayesian analysis ; Biology ; Chromosome 17 ; Chromosome Mapping ; Chromosomes, Mammalian ; Crosses, Genetic ; Electroencephalography ; Electromyography ; Emotional disorders ; Eye movements ; Factor Analysis, Statistical ; Gene mapping ; Genes ; Genetic control ; Genetic Linkage ; Genetic research ; Genetics ; Genetics and Genomics/Animal Genetics ; Genetics and Genomics/Complex Traits ; Genomes ; Genomics ; Laboratories ; Latency ; Life span ; Light emitting diodes ; Lod Score ; Male ; Mammals ; Mice ; Mice, Inbred BALB C ; Mice, Inbred Strains ; Models, Genetic ; Mutation ; Neuroscience ; Neuroscience/Behavioral Neuroscience ; Polymorphism, Single Nucleotide ; Population ; Population genetics ; Quantitative genetics ; Quantitative trait loci ; Quantitative Trait Loci - genetics ; Reaction Time ; Regulatory mechanisms (biology) ; Rodents ; Sleep ; Sleep - genetics ; Sleep and wakefulness ; Sleep, REM - genetics ; Time Factors ; Trends</subject><ispartof>PloS one, 2009-04, Vol.4 (4), p.e5161-e5161</ispartof><rights>COPYRIGHT 2009 Public Library of Science</rights><rights>2009 Winrow et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Winrow et al. 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c721t-5cdf5dddebd83dfed91a2399f2eedebe4e956e2bfa7688a7a0d5cafe52bf9bb83</citedby><cites>FETCH-LOGICAL-c721t-5cdf5dddebd83dfed91a2399f2eedebe4e956e2bfa7688a7a0d5cafe52bf9bb83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2664962/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2664962/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2104,2930,23873,27931,27932,53798,53800</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19360106$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Zaas, Aimee K.</contributor><creatorcontrib>Winrow, Christopher J</creatorcontrib><creatorcontrib>Williams, Deanna L</creatorcontrib><creatorcontrib>Kasarskis, Andrew</creatorcontrib><creatorcontrib>Millstein, Joshua</creatorcontrib><creatorcontrib>Laposky, Aaron D</creatorcontrib><creatorcontrib>Yang, He S</creatorcontrib><creatorcontrib>Mrazek, Karrie</creatorcontrib><creatorcontrib>Zhou, Lili</creatorcontrib><creatorcontrib>Owens, Joseph R</creatorcontrib><creatorcontrib>Radzicki, Daniel</creatorcontrib><creatorcontrib>Preuss, Fabian</creatorcontrib><creatorcontrib>Schadt, Eric E</creatorcontrib><creatorcontrib>Shimomura, Kazuhiro</creatorcontrib><creatorcontrib>Vitaterna, Martha H</creatorcontrib><creatorcontrib>Zhang, Chunsheng</creatorcontrib><creatorcontrib>Koblan, Kenneth S</creatorcontrib><creatorcontrib>Renger, John J</creatorcontrib><creatorcontrib>Turek, Fred W</creatorcontrib><title>Uncovering the genetic landscape for multiple sleep-wake traits</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Despite decades of research in defining sleep-wake properties in mammals, little is known about the nature or identity of genes that regulate sleep, a fundamental behaviour that in humans occupies about one-third of the entire lifespan. While genome-wide association studies in humans and quantitative trait loci (QTL) analyses in mice have identified candidate genes for an increasing number of complex traits and genetic diseases, the resources and time-consuming process necessary for obtaining detailed quantitative data have made sleep seemingly intractable to similar large-scale genomic approaches. Here we describe analysis of 20 sleep-wake traits from 269 mice from a genetically segregating population that reveals 52 significant QTL representing a minimum of 20 genomic loci. While many (28) QTL affected a particular sleep-wake trait (e.g., amount of wake) across the full 24-hr day, other loci only affected a trait in the light or dark period while some loci had opposite effects on the trait during the light vs. dark. Analysis of a dataset for multiple sleep-wake traits led to previously undetected interactions (including the differential genetic control of number and duration of REM bouts), as well as possible shared genetic regulatory mechanisms for seemingly different unrelated sleep-wake traits (e.g., number of arousals and REM latency). Construction of a Bayesian network for sleep-wake traits and loci led to the identification of sub-networks of linkage not detectable in smaller data sets or limited single-trait analyses. For example, the network analyses revealed a novel chain of causal relationships between the chromosome 17@29cM QTL, total amount of wake, and duration of wake bouts in both light and dark periods that implies a mechanism whereby overall sleep need, mediated by this locus, in turn determines the length of each wake bout. Taken together, the present results reveal a complex genetic landscape underlying multiple sleep-wake traits and emphasize the need for a systems biology approach for elucidating the full extent of the genetic regulatory mechanisms of this complex and universal behavior.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Animals</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Biology</subject><subject>Chromosome 17</subject><subject>Chromosome Mapping</subject><subject>Chromosomes, Mammalian</subject><subject>Crosses, Genetic</subject><subject>Electroencephalography</subject><subject>Electromyography</subject><subject>Emotional disorders</subject><subject>Eye movements</subject><subject>Factor Analysis, Statistical</subject><subject>Gene mapping</subject><subject>Genes</subject><subject>Genetic control</subject><subject>Genetic Linkage</subject><subject>Genetic research</subject><subject>Genetics</subject><subject>Genetics and Genomics/Animal Genetics</subject><subject>Genetics and Genomics/Complex Traits</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Laboratories</subject><subject>Latency</subject><subject>Life span</subject><subject>Light emitting diodes</subject><subject>Lod Score</subject><subject>Male</subject><subject>Mammals</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Mice, Inbred Strains</subject><subject>Models, Genetic</subject><subject>Mutation</subject><subject>Neuroscience</subject><subject>Neuroscience/Behavioral Neuroscience</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Population</subject><subject>Population genetics</subject><subject>Quantitative genetics</subject><subject>Quantitative trait loci</subject><subject>Quantitative Trait Loci - genetics</subject><subject>Reaction Time</subject><subject>Regulatory mechanisms (biology)</subject><subject>Rodents</subject><subject>Sleep</subject><subject>Sleep - genetics</subject><subject>Sleep and wakefulness</subject><subject>Sleep, REM - genetics</subject><subject>Time Factors</subject><subject>Trends</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9-L1DAQx4so3nn6H4gWhAMfdk3SNm1elOPwx8LBgXq-hmky7ebMNrVJT_3vTd2qWzlQ8pAw85lvMjOZJHlMyZpmJX1x7cahA7vuXYdrQkhBOb2THFORsRVnJLt7cD5KHnh_HZms4vx-chQdnFDCj5NXV51yNziYrk3DFtMWOwxGpRY67RX0mDZuSHejDaa3mHqL2K--wmdMwwAm-IfJvQasx0fzfpJcvXn98fzd6uLy7eb87GKlSkbDqlC6KbTWWOsq0w1qQYFlQjQMMRoxR1FwZHUDJa8qKIHoQkGDRTSJuq6yk-TpXre3zss5dy8pE6QoaUVIJDZ7Qju4lv1gdjB8lw6M_GlwQythiKlZlKSEOsu54jVgrpoKQADTJVAukCBMWi_n28Z6h1phF7O1C9GlpzNb2bobyTjPBWdR4HQWGNyXEX2QO-MV2lhWdKOXvKSMiYr8E2SkEJzSSfHZX-DtRZipFmKepmtcfJ6aJOVZXmasYFk-aa1voeLSuDMq_qfGRPsi4PkiIDIBv4UWRu_l5sP7_2cvPy3Z0wN2i2DD1js7BuM6vwTzPagG5_2Aze9eUCKncfhVDTmNg5zHIYY9Oezjn6D5_2c_AJJSBq0</recordid><startdate>20090410</startdate><enddate>20090410</enddate><creator>Winrow, Christopher J</creator><creator>Williams, Deanna L</creator><creator>Kasarskis, Andrew</creator><creator>Millstein, Joshua</creator><creator>Laposky, Aaron D</creator><creator>Yang, He S</creator><creator>Mrazek, Karrie</creator><creator>Zhou, Lili</creator><creator>Owens, Joseph R</creator><creator>Radzicki, Daniel</creator><creator>Preuss, Fabian</creator><creator>Schadt, Eric E</creator><creator>Shimomura, Kazuhiro</creator><creator>Vitaterna, Martha H</creator><creator>Zhang, Chunsheng</creator><creator>Koblan, Kenneth S</creator><creator>Renger, John J</creator><creator>Turek, Fred W</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20090410</creationdate><title>Uncovering the genetic landscape for multiple sleep-wake traits</title><author>Winrow, Christopher J ; Williams, Deanna L ; Kasarskis, Andrew ; Millstein, Joshua ; Laposky, Aaron D ; Yang, He S ; Mrazek, Karrie ; Zhou, Lili ; Owens, Joseph R ; Radzicki, Daniel ; Preuss, Fabian ; Schadt, Eric E ; Shimomura, Kazuhiro ; Vitaterna, Martha H ; Zhang, Chunsheng ; Koblan, Kenneth S ; Renger, John J ; Turek, Fred W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c721t-5cdf5dddebd83dfed91a2399f2eedebe4e956e2bfa7688a7a0d5cafe52bf9bb83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Animals</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Biology</topic><topic>Chromosome 17</topic><topic>Chromosome Mapping</topic><topic>Chromosomes, Mammalian</topic><topic>Crosses, Genetic</topic><topic>Electroencephalography</topic><topic>Electromyography</topic><topic>Emotional disorders</topic><topic>Eye movements</topic><topic>Factor Analysis, Statistical</topic><topic>Gene mapping</topic><topic>Genes</topic><topic>Genetic control</topic><topic>Genetic Linkage</topic><topic>Genetic research</topic><topic>Genetics</topic><topic>Genetics and Genomics/Animal Genetics</topic><topic>Genetics and Genomics/Complex Traits</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Laboratories</topic><topic>Latency</topic><topic>Life span</topic><topic>Light emitting diodes</topic><topic>Lod Score</topic><topic>Male</topic><topic>Mammals</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Mice, Inbred Strains</topic><topic>Models, Genetic</topic><topic>Mutation</topic><topic>Neuroscience</topic><topic>Neuroscience/Behavioral Neuroscience</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Population</topic><topic>Population genetics</topic><topic>Quantitative genetics</topic><topic>Quantitative trait loci</topic><topic>Quantitative Trait Loci - genetics</topic><topic>Reaction Time</topic><topic>Regulatory mechanisms (biology)</topic><topic>Rodents</topic><topic>Sleep</topic><topic>Sleep - genetics</topic><topic>Sleep and wakefulness</topic><topic>Sleep, REM - genetics</topic><topic>Time Factors</topic><topic>Trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Winrow, Christopher J</creatorcontrib><creatorcontrib>Williams, Deanna L</creatorcontrib><creatorcontrib>Kasarskis, Andrew</creatorcontrib><creatorcontrib>Millstein, Joshua</creatorcontrib><creatorcontrib>Laposky, Aaron D</creatorcontrib><creatorcontrib>Yang, He S</creatorcontrib><creatorcontrib>Mrazek, Karrie</creatorcontrib><creatorcontrib>Zhou, Lili</creatorcontrib><creatorcontrib>Owens, Joseph R</creatorcontrib><creatorcontrib>Radzicki, Daniel</creatorcontrib><creatorcontrib>Preuss, Fabian</creatorcontrib><creatorcontrib>Schadt, Eric E</creatorcontrib><creatorcontrib>Shimomura, Kazuhiro</creatorcontrib><creatorcontrib>Vitaterna, Martha H</creatorcontrib><creatorcontrib>Zhang, Chunsheng</creatorcontrib><creatorcontrib>Koblan, Kenneth S</creatorcontrib><creatorcontrib>Renger, John J</creatorcontrib><creatorcontrib>Turek, Fred W</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Winrow, Christopher J</au><au>Williams, Deanna L</au><au>Kasarskis, Andrew</au><au>Millstein, Joshua</au><au>Laposky, Aaron D</au><au>Yang, He S</au><au>Mrazek, Karrie</au><au>Zhou, Lili</au><au>Owens, Joseph R</au><au>Radzicki, Daniel</au><au>Preuss, Fabian</au><au>Schadt, Eric E</au><au>Shimomura, Kazuhiro</au><au>Vitaterna, Martha H</au><au>Zhang, Chunsheng</au><au>Koblan, Kenneth S</au><au>Renger, John J</au><au>Turek, Fred W</au><au>Zaas, Aimee K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uncovering the genetic landscape for multiple sleep-wake traits</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2009-04-10</date><risdate>2009</risdate><volume>4</volume><issue>4</issue><spage>e5161</spage><epage>e5161</epage><pages>e5161-e5161</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Despite decades of research in defining sleep-wake properties in mammals, little is known about the nature or identity of genes that regulate sleep, a fundamental behaviour that in humans occupies about one-third of the entire lifespan. While genome-wide association studies in humans and quantitative trait loci (QTL) analyses in mice have identified candidate genes for an increasing number of complex traits and genetic diseases, the resources and time-consuming process necessary for obtaining detailed quantitative data have made sleep seemingly intractable to similar large-scale genomic approaches. Here we describe analysis of 20 sleep-wake traits from 269 mice from a genetically segregating population that reveals 52 significant QTL representing a minimum of 20 genomic loci. While many (28) QTL affected a particular sleep-wake trait (e.g., amount of wake) across the full 24-hr day, other loci only affected a trait in the light or dark period while some loci had opposite effects on the trait during the light vs. dark. Analysis of a dataset for multiple sleep-wake traits led to previously undetected interactions (including the differential genetic control of number and duration of REM bouts), as well as possible shared genetic regulatory mechanisms for seemingly different unrelated sleep-wake traits (e.g., number of arousals and REM latency). Construction of a Bayesian network for sleep-wake traits and loci led to the identification of sub-networks of linkage not detectable in smaller data sets or limited single-trait analyses. For example, the network analyses revealed a novel chain of causal relationships between the chromosome 17@29cM QTL, total amount of wake, and duration of wake bouts in both light and dark periods that implies a mechanism whereby overall sleep need, mediated by this locus, in turn determines the length of each wake bout. Taken together, the present results reveal a complex genetic landscape underlying multiple sleep-wake traits and emphasize the need for a systems biology approach for elucidating the full extent of the genetic regulatory mechanisms of this complex and universal behavior.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>19360106</pmid><doi>10.1371/journal.pone.0005161</doi><tpages>e5161</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2009-04, Vol.4 (4), p.e5161-e5161 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1290571800 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Algorithms Analysis Animals Bayes Theorem Bayesian analysis Biology Chromosome 17 Chromosome Mapping Chromosomes, Mammalian Crosses, Genetic Electroencephalography Electromyography Emotional disorders Eye movements Factor Analysis, Statistical Gene mapping Genes Genetic control Genetic Linkage Genetic research Genetics Genetics and Genomics/Animal Genetics Genetics and Genomics/Complex Traits Genomes Genomics Laboratories Latency Life span Light emitting diodes Lod Score Male Mammals Mice Mice, Inbred BALB C Mice, Inbred Strains Models, Genetic Mutation Neuroscience Neuroscience/Behavioral Neuroscience Polymorphism, Single Nucleotide Population Population genetics Quantitative genetics Quantitative trait loci Quantitative Trait Loci - genetics Reaction Time Regulatory mechanisms (biology) Rodents Sleep Sleep - genetics Sleep and wakefulness Sleep, REM - genetics Time Factors Trends |
title | Uncovering the genetic landscape for multiple sleep-wake traits |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T15%3A47%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uncovering%20the%20genetic%20landscape%20for%20multiple%20sleep-wake%20traits&rft.jtitle=PloS%20one&rft.au=Winrow,%20Christopher%20J&rft.date=2009-04-10&rft.volume=4&rft.issue=4&rft.spage=e5161&rft.epage=e5161&rft.pages=e5161-e5161&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0005161&rft_dat=%3Cgale_plos_%3EA473252342%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1290571800&rft_id=info:pmid/19360106&rft_galeid=A473252342&rft_doaj_id=oai_doaj_org_article_07ab346c6bae4cf8aa9a2d7a169e0ea0&rfr_iscdi=true |