Regulator of G-protein signaling 14 (RGS14) is a selective H-Ras effector
Regulator of G-protein signaling (RGS) proteins have been well-described as accelerators of Galpha-mediated GTP hydrolysis ("GTPase-accelerating proteins" or GAPs). However, RGS proteins with complex domain architectures are now known to regulate much more than Galpha GTPase activity. RGS1...
Gespeichert in:
Veröffentlicht in: | PloS one 2009-03, Vol.4 (3), p.e4884-e4884 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Regulator of G-protein signaling (RGS) proteins have been well-described as accelerators of Galpha-mediated GTP hydrolysis ("GTPase-accelerating proteins" or GAPs). However, RGS proteins with complex domain architectures are now known to regulate much more than Galpha GTPase activity. RGS14 contains tandem Ras-binding domains that have been reported to bind to Rap- but not Ras GTPases in vitro, leading to the suggestion that RGS14 is a Rap-specific effector. However, more recent data from mammals and Drosophila imply that, in vivo, RGS14 may instead be an effector of Ras.
Full-length and truncated forms of purified RGS14 protein were found to bind indiscriminately in vitro to both Rap- and Ras-family GTPases, consistent with prior literature reports. In stark contrast, however, we found that in a cellular context RGS14 selectively binds to activated H-Ras and not to Rap isoforms. Co-transfection / co-immunoprecipitation experiments demonstrated the ability of full-length RGS14 to assemble a multiprotein complex with components of the ERK MAPK pathway in a manner dependent on activated H-Ras. Small interfering RNA-mediated knockdown of RGS14 inhibited both nerve growth factor- and basic fibrobast growth factor-mediated neuronal differentiation of PC12 cells, a process which is known to be dependent on Ras-ERK signaling.
In cells, RGS14 facilitates the formation of a selective Ras.GTP-Raf-MEK-ERK multiprotein complex to promote sustained ERK activation and regulate H-Ras-dependent neuritogenesis. This cellular function for RGS14 is similar but distinct from that recently described for its closely-related paralogue, RGS12, which shares the tandem Ras-binding domain architecture with RGS14. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0004884 |