Manipulating heat shock factor-1 in Xenopus tadpoles: neuronal tissues are refractory to exogenous expression
The aging related decline of heat shock factor-1 (HSF1) signaling may be causally related to protein aggregation diseases. To model such disease, we tried to cripple HSF1 signaling in the Xenopus tadpole. Over-expression of heat shock factor binding protein-1 did not inhibit the heat shock response...
Gespeichert in:
Veröffentlicht in: | PloS one 2010-04, Vol.5 (4), p.e10158-e10158 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The aging related decline of heat shock factor-1 (HSF1) signaling may be causally related to protein aggregation diseases. To model such disease, we tried to cripple HSF1 signaling in the Xenopus tadpole.
Over-expression of heat shock factor binding protein-1 did not inhibit the heat shock response in Xenopus. RNAi against HSF1 mRNA inhibited the heat shock response by 70% in Xenopus A6 cells, but failed in transgenic tadpoles. Expression of XHSF380, a dominant-negative HSF1 mutant, was embryonic lethal, which could be circumvented by delaying expression via a tetracycline inducible promoter. HSF1 signaling is thus essential for embryonic Xenopus development. Surprisingly, transgenic expression of the XHSF380 or of full length HSF1, whether driven by a ubiquitous or a neural specific promoter, was not detectable in the larval brain.
Our finding that the majority of neurons, which have little endogenous HSF1, refused to accept transgene-driven expression of HSF1 or its mutant suggests that HSF1 levels are strictly controlled in neuronal tissue. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0010158 |