Differentiation of symbiotic cells and endosymbionts in Medicago truncatula nodulation are coupled to two transcriptome-switches

The legume plant Medicago truncatula establishes a symbiosis with the nitrogen-fixing bacterium Sinorhizobium meliloti which takes place in root nodules. The formation of nodules employs a complex developmental program involving organogenesis, specific cellular differentiation of the host cells and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2010-03, Vol.5 (3), p.e9519-e9519
Hauptverfasser: Maunoury, Nicolas, Redondo-Nieto, Miguel, Bourcy, Marie, Van de Velde, Willem, Alunni, Benoit, Laporte, Philippe, Durand, Patricia, Agier, Nicolas, Marisa, Laetitia, Vaubert, Danièle, Delacroix, Hervé, Duc, Gérard, Ratet, Pascal, Aggerbeck, Lawrence, Kondorosi, Eva, Mergaert, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e9519
container_issue 3
container_start_page e9519
container_title PloS one
container_volume 5
creator Maunoury, Nicolas
Redondo-Nieto, Miguel
Bourcy, Marie
Van de Velde, Willem
Alunni, Benoit
Laporte, Philippe
Durand, Patricia
Agier, Nicolas
Marisa, Laetitia
Vaubert, Danièle
Delacroix, Hervé
Duc, Gérard
Ratet, Pascal
Aggerbeck, Lawrence
Kondorosi, Eva
Mergaert, Peter
description The legume plant Medicago truncatula establishes a symbiosis with the nitrogen-fixing bacterium Sinorhizobium meliloti which takes place in root nodules. The formation of nodules employs a complex developmental program involving organogenesis, specific cellular differentiation of the host cells and the endosymbiotic bacteria, called bacteroids, as well as the specific activation of a large number of plant genes. By using a collection of plant and bacterial mutants inducing non-functional, Fix(-) nodules, we studied the differentiation processes of the symbiotic partners together with the nodule transcriptome, with the aim of unravelling links between cell differentiation and transcriptome activation. Two waves of transcriptional reprogramming involving the repression and the massive induction of hundreds of genes were observed during wild-type nodule formation. The dominant features of this "nodule-specific transcriptome" were the repression of plant defense-related genes, the transient activation of cell cycle and protein synthesis genes at the early stage of nodule development and the activation of the secretory pathway along with a large number of transmembrane and secretory proteins or peptides throughout organogenesis. The fifteen plant and bacterial mutants that were analyzed fell into four major categories. Members of the first category of mutants formed non-functional nodules although they had differentiated nodule cells and bacteroids. This group passed the two transcriptome switch-points similarly to the wild type. The second category, which formed nodules in which the plant cells were differentiated and infected but the bacteroids did not differentiate, passed the first transcriptome switch but not the second one. Nodules in the third category contained infection threads but were devoid of differentiated symbiotic cells and displayed a root-like transcriptome. Nodules in the fourth category were free of bacteria, devoid of differentiated symbiotic cells and also displayed a root-like transcriptome. A correlation thus exists between the differentiation of symbiotic nodule cells and the first wave of nodule specific gene activation and between differentiation of rhizobia to bacteroids and the second transcriptome wave in nodules. The differentiation of symbiotic cells and of bacteroids may therefore constitute signals for the execution of these transcriptome-switches.
doi_str_mv 10.1371/journal.pone.0009519
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1289429844</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A473909794</galeid><doaj_id>oai_doaj_org_article_871e1b721147415fb7f6ad5ad9b3eee4</doaj_id><sourcerecordid>A473909794</sourcerecordid><originalsourceid>FETCH-LOGICAL-c791t-d60df588a219886ba3130397e4333a3bba3f781d68fd441e658359cef390f5a63</originalsourceid><addsrcrecordid>eNqNk11v0zAUhiMEYmPwDxBEQgLtosWOE8e-QarGxyoNTeLr1nLs49ZVahfb2dgdPx1n7aZ12gXKhaOT532P89qnKF5iNMWkxe9XfghO9tONdzBFCPEG80fFIeakmtAKkcd33g-KZzGuEGoIo_RpcVChCnFU88Pi70drDARwycpkvSu9KePVurM-WVUq6PtYSqdLcNpv6y7F0rryK2ir5MKXKQxOyTT0snRe5-XaRgYolR82PegyZehyBKWLKthN8muYxEub1BLi8-KJkX2EF7v1qPj5-dOPk9PJ2fmX-cnsbKJajtNEU6RNw5isMGeMdpJggghvoSaESNLlgmkZ1pQZXdcYaMNIwxUYwpFpJCVHxeut76b3UezCiwJXjNcVZ3WdifmW0F6uxCbYtQxXwksrrgs-LIQMOZUeBGsx4K6tMK7bGjemaw2VupGadwQARq8Pu25Dtwatcr5B9num-1-cXYqFvxAVIxVCLBscbw2W92SnszMx1lBFaW5PL3Bm3-2aBf97gJjE2sbx6KQDP0TREtKwuqIj-eYe-XAQO2oh879aZ3zeoho9xaxuc6C85SM1fYDKj4a1VflSGpvre4LjPUFmEvxJCznEKObfv_0_e_5rn317h12C7NMy-n4Y72HcB-stqIKPMYC5DRYjMc7UTRpinCmxm6kse3X3LG9FN0NE_gG7dh3I</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1289429844</pqid></control><display><type>article</type><title>Differentiation of symbiotic cells and endosymbionts in Medicago truncatula nodulation are coupled to two transcriptome-switches</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Maunoury, Nicolas ; Redondo-Nieto, Miguel ; Bourcy, Marie ; Van de Velde, Willem ; Alunni, Benoit ; Laporte, Philippe ; Durand, Patricia ; Agier, Nicolas ; Marisa, Laetitia ; Vaubert, Danièle ; Delacroix, Hervé ; Duc, Gérard ; Ratet, Pascal ; Aggerbeck, Lawrence ; Kondorosi, Eva ; Mergaert, Peter</creator><contributor>Bendahmane, Mohammed</contributor><creatorcontrib>Maunoury, Nicolas ; Redondo-Nieto, Miguel ; Bourcy, Marie ; Van de Velde, Willem ; Alunni, Benoit ; Laporte, Philippe ; Durand, Patricia ; Agier, Nicolas ; Marisa, Laetitia ; Vaubert, Danièle ; Delacroix, Hervé ; Duc, Gérard ; Ratet, Pascal ; Aggerbeck, Lawrence ; Kondorosi, Eva ; Mergaert, Peter ; Bendahmane, Mohammed</creatorcontrib><description>The legume plant Medicago truncatula establishes a symbiosis with the nitrogen-fixing bacterium Sinorhizobium meliloti which takes place in root nodules. The formation of nodules employs a complex developmental program involving organogenesis, specific cellular differentiation of the host cells and the endosymbiotic bacteria, called bacteroids, as well as the specific activation of a large number of plant genes. By using a collection of plant and bacterial mutants inducing non-functional, Fix(-) nodules, we studied the differentiation processes of the symbiotic partners together with the nodule transcriptome, with the aim of unravelling links between cell differentiation and transcriptome activation. Two waves of transcriptional reprogramming involving the repression and the massive induction of hundreds of genes were observed during wild-type nodule formation. The dominant features of this "nodule-specific transcriptome" were the repression of plant defense-related genes, the transient activation of cell cycle and protein synthesis genes at the early stage of nodule development and the activation of the secretory pathway along with a large number of transmembrane and secretory proteins or peptides throughout organogenesis. The fifteen plant and bacterial mutants that were analyzed fell into four major categories. Members of the first category of mutants formed non-functional nodules although they had differentiated nodule cells and bacteroids. This group passed the two transcriptome switch-points similarly to the wild type. The second category, which formed nodules in which the plant cells were differentiated and infected but the bacteroids did not differentiate, passed the first transcriptome switch but not the second one. Nodules in the third category contained infection threads but were devoid of differentiated symbiotic cells and displayed a root-like transcriptome. Nodules in the fourth category were free of bacteria, devoid of differentiated symbiotic cells and also displayed a root-like transcriptome. A correlation thus exists between the differentiation of symbiotic nodule cells and the first wave of nodule specific gene activation and between differentiation of rhizobia to bacteroids and the second transcriptome wave in nodules. The differentiation of symbiotic cells and of bacteroids may therefore constitute signals for the execution of these transcriptome-switches.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0009519</identifier><identifier>PMID: 20209049</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>21st century ; Alfalfa ; Algorithms ; Arabidopsis ; Bacteria ; Bacteroids ; Cell activation ; Cell cycle ; Cell Differentiation ; Cell division ; Cellular Biology ; Deoxyribonucleic acid ; Developmental biology ; Developmental stages ; Differentiation (biology) ; DNA ; Endosymbionts ; Evolution ; Expressed Sequence Tags ; Gene expression ; Gene Expression Profiling ; Gene Expression Regulation, Bacterial ; Gene Expression Regulation, Plant ; Gene silencing ; Genes ; Genetic Markers ; Genetics and Genomics/Plant Genetics and Gene Expression ; Genomes ; Infections ; Legumes ; Life Sciences ; Mathematical models ; Medicago - metabolism ; Medicago truncatula ; Mutagenesis ; Mutants ; Mutation ; Nitrogen ; Nitrogen - chemistry ; Nitrogen Fixation ; Nodulation ; Nodules ; Organogenesis ; Peptides ; Phenotype ; Plant Biology/Plant Cell Biology ; Plant Biology/Plant-Biotic Interactions ; Plant cells ; Plant genetics ; Ploidies ; Protein biosynthesis ; Protein synthesis ; Proteins ; Root nodules ; Senescence ; Sinorhizobium meliloti - genetics ; Switches ; Symbiosis ; Symbiosis - physiology ; Transcription (Genetics) ; Transcription activation</subject><ispartof>PloS one, 2010-03, Vol.5 (3), p.e9519-e9519</ispartof><rights>COPYRIGHT 2010 Public Library of Science</rights><rights>2010 Maunoury et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Maunoury et al. 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c791t-d60df588a219886ba3130397e4333a3bba3f781d68fd441e658359cef390f5a63</citedby><orcidid>0000-0002-8621-1495 ; 0000-0002-4065-8515 ; 0000-0002-5919-7317</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2832008/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2832008/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,2915,23847,27905,27906,53772,53774,79349,79350</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20209049$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-02661146$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Bendahmane, Mohammed</contributor><creatorcontrib>Maunoury, Nicolas</creatorcontrib><creatorcontrib>Redondo-Nieto, Miguel</creatorcontrib><creatorcontrib>Bourcy, Marie</creatorcontrib><creatorcontrib>Van de Velde, Willem</creatorcontrib><creatorcontrib>Alunni, Benoit</creatorcontrib><creatorcontrib>Laporte, Philippe</creatorcontrib><creatorcontrib>Durand, Patricia</creatorcontrib><creatorcontrib>Agier, Nicolas</creatorcontrib><creatorcontrib>Marisa, Laetitia</creatorcontrib><creatorcontrib>Vaubert, Danièle</creatorcontrib><creatorcontrib>Delacroix, Hervé</creatorcontrib><creatorcontrib>Duc, Gérard</creatorcontrib><creatorcontrib>Ratet, Pascal</creatorcontrib><creatorcontrib>Aggerbeck, Lawrence</creatorcontrib><creatorcontrib>Kondorosi, Eva</creatorcontrib><creatorcontrib>Mergaert, Peter</creatorcontrib><title>Differentiation of symbiotic cells and endosymbionts in Medicago truncatula nodulation are coupled to two transcriptome-switches</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The legume plant Medicago truncatula establishes a symbiosis with the nitrogen-fixing bacterium Sinorhizobium meliloti which takes place in root nodules. The formation of nodules employs a complex developmental program involving organogenesis, specific cellular differentiation of the host cells and the endosymbiotic bacteria, called bacteroids, as well as the specific activation of a large number of plant genes. By using a collection of plant and bacterial mutants inducing non-functional, Fix(-) nodules, we studied the differentiation processes of the symbiotic partners together with the nodule transcriptome, with the aim of unravelling links between cell differentiation and transcriptome activation. Two waves of transcriptional reprogramming involving the repression and the massive induction of hundreds of genes were observed during wild-type nodule formation. The dominant features of this "nodule-specific transcriptome" were the repression of plant defense-related genes, the transient activation of cell cycle and protein synthesis genes at the early stage of nodule development and the activation of the secretory pathway along with a large number of transmembrane and secretory proteins or peptides throughout organogenesis. The fifteen plant and bacterial mutants that were analyzed fell into four major categories. Members of the first category of mutants formed non-functional nodules although they had differentiated nodule cells and bacteroids. This group passed the two transcriptome switch-points similarly to the wild type. The second category, which formed nodules in which the plant cells were differentiated and infected but the bacteroids did not differentiate, passed the first transcriptome switch but not the second one. Nodules in the third category contained infection threads but were devoid of differentiated symbiotic cells and displayed a root-like transcriptome. Nodules in the fourth category were free of bacteria, devoid of differentiated symbiotic cells and also displayed a root-like transcriptome. A correlation thus exists between the differentiation of symbiotic nodule cells and the first wave of nodule specific gene activation and between differentiation of rhizobia to bacteroids and the second transcriptome wave in nodules. The differentiation of symbiotic cells and of bacteroids may therefore constitute signals for the execution of these transcriptome-switches.</description><subject>21st century</subject><subject>Alfalfa</subject><subject>Algorithms</subject><subject>Arabidopsis</subject><subject>Bacteria</subject><subject>Bacteroids</subject><subject>Cell activation</subject><subject>Cell cycle</subject><subject>Cell Differentiation</subject><subject>Cell division</subject><subject>Cellular Biology</subject><subject>Deoxyribonucleic acid</subject><subject>Developmental biology</subject><subject>Developmental stages</subject><subject>Differentiation (biology)</subject><subject>DNA</subject><subject>Endosymbionts</subject><subject>Evolution</subject><subject>Expressed Sequence Tags</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Gene Expression Regulation, Plant</subject><subject>Gene silencing</subject><subject>Genes</subject><subject>Genetic Markers</subject><subject>Genetics and Genomics/Plant Genetics and Gene Expression</subject><subject>Genomes</subject><subject>Infections</subject><subject>Legumes</subject><subject>Life Sciences</subject><subject>Mathematical models</subject><subject>Medicago - metabolism</subject><subject>Medicago truncatula</subject><subject>Mutagenesis</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Nitrogen</subject><subject>Nitrogen - chemistry</subject><subject>Nitrogen Fixation</subject><subject>Nodulation</subject><subject>Nodules</subject><subject>Organogenesis</subject><subject>Peptides</subject><subject>Phenotype</subject><subject>Plant Biology/Plant Cell Biology</subject><subject>Plant Biology/Plant-Biotic Interactions</subject><subject>Plant cells</subject><subject>Plant genetics</subject><subject>Ploidies</subject><subject>Protein biosynthesis</subject><subject>Protein synthesis</subject><subject>Proteins</subject><subject>Root nodules</subject><subject>Senescence</subject><subject>Sinorhizobium meliloti - genetics</subject><subject>Switches</subject><subject>Symbiosis</subject><subject>Symbiosis - physiology</subject><subject>Transcription (Genetics)</subject><subject>Transcription activation</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11v0zAUhiMEYmPwDxBEQgLtosWOE8e-QarGxyoNTeLr1nLs49ZVahfb2dgdPx1n7aZ12gXKhaOT532P89qnKF5iNMWkxe9XfghO9tONdzBFCPEG80fFIeakmtAKkcd33g-KZzGuEGoIo_RpcVChCnFU88Pi70drDARwycpkvSu9KePVurM-WVUq6PtYSqdLcNpv6y7F0rryK2ir5MKXKQxOyTT0snRe5-XaRgYolR82PegyZehyBKWLKthN8muYxEub1BLi8-KJkX2EF7v1qPj5-dOPk9PJ2fmX-cnsbKJajtNEU6RNw5isMGeMdpJggghvoSaESNLlgmkZ1pQZXdcYaMNIwxUYwpFpJCVHxeut76b3UezCiwJXjNcVZ3WdifmW0F6uxCbYtQxXwksrrgs-LIQMOZUeBGsx4K6tMK7bGjemaw2VupGadwQARq8Pu25Dtwatcr5B9num-1-cXYqFvxAVIxVCLBscbw2W92SnszMx1lBFaW5PL3Bm3-2aBf97gJjE2sbx6KQDP0TREtKwuqIj-eYe-XAQO2oh879aZ3zeoho9xaxuc6C85SM1fYDKj4a1VflSGpvre4LjPUFmEvxJCznEKObfv_0_e_5rn317h12C7NMy-n4Y72HcB-stqIKPMYC5DRYjMc7UTRpinCmxm6kse3X3LG9FN0NE_gG7dh3I</recordid><startdate>20100304</startdate><enddate>20100304</enddate><creator>Maunoury, Nicolas</creator><creator>Redondo-Nieto, Miguel</creator><creator>Bourcy, Marie</creator><creator>Van de Velde, Willem</creator><creator>Alunni, Benoit</creator><creator>Laporte, Philippe</creator><creator>Durand, Patricia</creator><creator>Agier, Nicolas</creator><creator>Marisa, Laetitia</creator><creator>Vaubert, Danièle</creator><creator>Delacroix, Hervé</creator><creator>Duc, Gérard</creator><creator>Ratet, Pascal</creator><creator>Aggerbeck, Lawrence</creator><creator>Kondorosi, Eva</creator><creator>Mergaert, Peter</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8621-1495</orcidid><orcidid>https://orcid.org/0000-0002-4065-8515</orcidid><orcidid>https://orcid.org/0000-0002-5919-7317</orcidid></search><sort><creationdate>20100304</creationdate><title>Differentiation of symbiotic cells and endosymbionts in Medicago truncatula nodulation are coupled to two transcriptome-switches</title><author>Maunoury, Nicolas ; Redondo-Nieto, Miguel ; Bourcy, Marie ; Van de Velde, Willem ; Alunni, Benoit ; Laporte, Philippe ; Durand, Patricia ; Agier, Nicolas ; Marisa, Laetitia ; Vaubert, Danièle ; Delacroix, Hervé ; Duc, Gérard ; Ratet, Pascal ; Aggerbeck, Lawrence ; Kondorosi, Eva ; Mergaert, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c791t-d60df588a219886ba3130397e4333a3bba3f781d68fd441e658359cef390f5a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>21st century</topic><topic>Alfalfa</topic><topic>Algorithms</topic><topic>Arabidopsis</topic><topic>Bacteria</topic><topic>Bacteroids</topic><topic>Cell activation</topic><topic>Cell cycle</topic><topic>Cell Differentiation</topic><topic>Cell division</topic><topic>Cellular Biology</topic><topic>Deoxyribonucleic acid</topic><topic>Developmental biology</topic><topic>Developmental stages</topic><topic>Differentiation (biology)</topic><topic>DNA</topic><topic>Endosymbionts</topic><topic>Evolution</topic><topic>Expressed Sequence Tags</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Gene Expression Regulation, Plant</topic><topic>Gene silencing</topic><topic>Genes</topic><topic>Genetic Markers</topic><topic>Genetics and Genomics/Plant Genetics and Gene Expression</topic><topic>Genomes</topic><topic>Infections</topic><topic>Legumes</topic><topic>Life Sciences</topic><topic>Mathematical models</topic><topic>Medicago - metabolism</topic><topic>Medicago truncatula</topic><topic>Mutagenesis</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Nitrogen</topic><topic>Nitrogen - chemistry</topic><topic>Nitrogen Fixation</topic><topic>Nodulation</topic><topic>Nodules</topic><topic>Organogenesis</topic><topic>Peptides</topic><topic>Phenotype</topic><topic>Plant Biology/Plant Cell Biology</topic><topic>Plant Biology/Plant-Biotic Interactions</topic><topic>Plant cells</topic><topic>Plant genetics</topic><topic>Ploidies</topic><topic>Protein biosynthesis</topic><topic>Protein synthesis</topic><topic>Proteins</topic><topic>Root nodules</topic><topic>Senescence</topic><topic>Sinorhizobium meliloti - genetics</topic><topic>Switches</topic><topic>Symbiosis</topic><topic>Symbiosis - physiology</topic><topic>Transcription (Genetics)</topic><topic>Transcription activation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maunoury, Nicolas</creatorcontrib><creatorcontrib>Redondo-Nieto, Miguel</creatorcontrib><creatorcontrib>Bourcy, Marie</creatorcontrib><creatorcontrib>Van de Velde, Willem</creatorcontrib><creatorcontrib>Alunni, Benoit</creatorcontrib><creatorcontrib>Laporte, Philippe</creatorcontrib><creatorcontrib>Durand, Patricia</creatorcontrib><creatorcontrib>Agier, Nicolas</creatorcontrib><creatorcontrib>Marisa, Laetitia</creatorcontrib><creatorcontrib>Vaubert, Danièle</creatorcontrib><creatorcontrib>Delacroix, Hervé</creatorcontrib><creatorcontrib>Duc, Gérard</creatorcontrib><creatorcontrib>Ratet, Pascal</creatorcontrib><creatorcontrib>Aggerbeck, Lawrence</creatorcontrib><creatorcontrib>Kondorosi, Eva</creatorcontrib><creatorcontrib>Mergaert, Peter</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maunoury, Nicolas</au><au>Redondo-Nieto, Miguel</au><au>Bourcy, Marie</au><au>Van de Velde, Willem</au><au>Alunni, Benoit</au><au>Laporte, Philippe</au><au>Durand, Patricia</au><au>Agier, Nicolas</au><au>Marisa, Laetitia</au><au>Vaubert, Danièle</au><au>Delacroix, Hervé</au><au>Duc, Gérard</au><au>Ratet, Pascal</au><au>Aggerbeck, Lawrence</au><au>Kondorosi, Eva</au><au>Mergaert, Peter</au><au>Bendahmane, Mohammed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differentiation of symbiotic cells and endosymbionts in Medicago truncatula nodulation are coupled to two transcriptome-switches</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2010-03-04</date><risdate>2010</risdate><volume>5</volume><issue>3</issue><spage>e9519</spage><epage>e9519</epage><pages>e9519-e9519</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The legume plant Medicago truncatula establishes a symbiosis with the nitrogen-fixing bacterium Sinorhizobium meliloti which takes place in root nodules. The formation of nodules employs a complex developmental program involving organogenesis, specific cellular differentiation of the host cells and the endosymbiotic bacteria, called bacteroids, as well as the specific activation of a large number of plant genes. By using a collection of plant and bacterial mutants inducing non-functional, Fix(-) nodules, we studied the differentiation processes of the symbiotic partners together with the nodule transcriptome, with the aim of unravelling links between cell differentiation and transcriptome activation. Two waves of transcriptional reprogramming involving the repression and the massive induction of hundreds of genes were observed during wild-type nodule formation. The dominant features of this "nodule-specific transcriptome" were the repression of plant defense-related genes, the transient activation of cell cycle and protein synthesis genes at the early stage of nodule development and the activation of the secretory pathway along with a large number of transmembrane and secretory proteins or peptides throughout organogenesis. The fifteen plant and bacterial mutants that were analyzed fell into four major categories. Members of the first category of mutants formed non-functional nodules although they had differentiated nodule cells and bacteroids. This group passed the two transcriptome switch-points similarly to the wild type. The second category, which formed nodules in which the plant cells were differentiated and infected but the bacteroids did not differentiate, passed the first transcriptome switch but not the second one. Nodules in the third category contained infection threads but were devoid of differentiated symbiotic cells and displayed a root-like transcriptome. Nodules in the fourth category were free of bacteria, devoid of differentiated symbiotic cells and also displayed a root-like transcriptome. A correlation thus exists between the differentiation of symbiotic nodule cells and the first wave of nodule specific gene activation and between differentiation of rhizobia to bacteroids and the second transcriptome wave in nodules. The differentiation of symbiotic cells and of bacteroids may therefore constitute signals for the execution of these transcriptome-switches.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>20209049</pmid><doi>10.1371/journal.pone.0009519</doi><tpages>e9519</tpages><orcidid>https://orcid.org/0000-0002-8621-1495</orcidid><orcidid>https://orcid.org/0000-0002-4065-8515</orcidid><orcidid>https://orcid.org/0000-0002-5919-7317</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2010-03, Vol.5 (3), p.e9519-e9519
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1289429844
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry
subjects 21st century
Alfalfa
Algorithms
Arabidopsis
Bacteria
Bacteroids
Cell activation
Cell cycle
Cell Differentiation
Cell division
Cellular Biology
Deoxyribonucleic acid
Developmental biology
Developmental stages
Differentiation (biology)
DNA
Endosymbionts
Evolution
Expressed Sequence Tags
Gene expression
Gene Expression Profiling
Gene Expression Regulation, Bacterial
Gene Expression Regulation, Plant
Gene silencing
Genes
Genetic Markers
Genetics and Genomics/Plant Genetics and Gene Expression
Genomes
Infections
Legumes
Life Sciences
Mathematical models
Medicago - metabolism
Medicago truncatula
Mutagenesis
Mutants
Mutation
Nitrogen
Nitrogen - chemistry
Nitrogen Fixation
Nodulation
Nodules
Organogenesis
Peptides
Phenotype
Plant Biology/Plant Cell Biology
Plant Biology/Plant-Biotic Interactions
Plant cells
Plant genetics
Ploidies
Protein biosynthesis
Protein synthesis
Proteins
Root nodules
Senescence
Sinorhizobium meliloti - genetics
Switches
Symbiosis
Symbiosis - physiology
Transcription (Genetics)
Transcription activation
title Differentiation of symbiotic cells and endosymbionts in Medicago truncatula nodulation are coupled to two transcriptome-switches
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T04%3A50%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differentiation%20of%20symbiotic%20cells%20and%20endosymbionts%20in%20Medicago%20truncatula%20nodulation%20are%20coupled%20to%20two%20transcriptome-switches&rft.jtitle=PloS%20one&rft.au=Maunoury,%20Nicolas&rft.date=2010-03-04&rft.volume=5&rft.issue=3&rft.spage=e9519&rft.epage=e9519&rft.pages=e9519-e9519&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0009519&rft_dat=%3Cgale_plos_%3EA473909794%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1289429844&rft_id=info:pmid/20209049&rft_galeid=A473909794&rft_doaj_id=oai_doaj_org_article_871e1b721147415fb7f6ad5ad9b3eee4&rfr_iscdi=true