Planar cell polarity enables posterior localization of nodal cilia and left-right axis determination during mouse and Xenopus embryogenesis

Left-right asymmetry in vertebrates is initiated in an early embryonic structure called the ventral node in human and mouse, and the gastrocoel roof plate (GRP) in the frog. Within these structures, each epithelial cell bears a single motile cilium, and the concerted beating of these cilia produces...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2010-02, Vol.5 (2), p.e8999-e8999
Hauptverfasser: Antic, Dragana, Stubbs, Jennifer L, Suyama, Kaye, Kintner, Chris, Scott, Matthew P, Axelrod, Jeffrey D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e8999
container_issue 2
container_start_page e8999
container_title PloS one
container_volume 5
creator Antic, Dragana
Stubbs, Jennifer L
Suyama, Kaye
Kintner, Chris
Scott, Matthew P
Axelrod, Jeffrey D
description Left-right asymmetry in vertebrates is initiated in an early embryonic structure called the ventral node in human and mouse, and the gastrocoel roof plate (GRP) in the frog. Within these structures, each epithelial cell bears a single motile cilium, and the concerted beating of these cilia produces a leftward fluid flow that is required to initiate left-right asymmetric gene expression. The leftward fluid flow is thought to result from the posterior tilt of the cilia, which protrude from near the posterior portion of each cell's apical surface. The cells, therefore, display a morphological planar polarization. Planar cell polarity (PCP) is manifested as the coordinated, polarized orientation of cells within epithelial sheets, or as directional cell migration and intercalation during convergent extension. A set of evolutionarily conserved proteins regulates PCP. Here, we provide evidence that vertebrate PCP proteins regulate planar polarity in the mouse ventral node and in the Xenopus gastrocoel roof plate. Asymmetric anterior localization of VANGL1 and PRICKLE2 (PK2) in mouse ventral node cells indicates that these cells are planar polarized by a conserved molecular mechanism. A weakly penetrant Vangl1 mutant phenotype suggests that compromised Vangl1 function may be associated with left-right laterality defects. Stronger functional evidence comes from the Xenopus GRP, where we show that perturbation of VANGL2 protein function disrupts the posterior localization of motile cilia that is required for leftward fluid flow, and causes aberrant expression of the left side-specific gene Nodal. The observation of anterior-posterior PCP in the mouse and in Xenopus embryonic organizers reflects a strong evolutionary conservation of this mechanism that is important for body plan determination.
doi_str_mv 10.1371/journal.pone.0008999
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1289259685</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A473920245</galeid><doaj_id>oai_doaj_org_article_143b2750d89c4966930141a8cacb6178</doaj_id><sourcerecordid>A473920245</sourcerecordid><originalsourceid>FETCH-LOGICAL-c757t-89e96ac747353d0c5565ec5c6405a5a7c9aad636e3dfcbd14ba086a37063c9af3</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7rr6D0QDguLFjEnTps2NsCx-DCys-IV34TQ97WRJkzFpZce_4J82szO7zMheSC4aTp73TfomJ8ueMjpnvGJvLv0UHNj5yjucU0prKeW97JhJns9ETvn9vflR9ijGS0pLXgvxMDvKKcsFl_I4-_PJgoNANFpLVt5CMOOaoIPGYkyFOGIwPhDrNVjzG0bjHfEdcb4FS7SxBgi4lljsxlkw_XIkcGUiaTEJB-O2gnYKxvVk8FPEa_wHOr-aIsGhCWvfo8No4uPsQQc24pPd9yT79v7d17OPs_OLD4uz0_OZrspqnNUSpQBdFRUveUt1WYoSdalFQUsoodISoBVcIG873bSsaIDWAnhFBU9rHT_Jnm99V9ZHtcsxKpbXMi-lqMtELLZE6-FSrYIZIKyVB6OuCz70CsJotEXFCt7kVUnbWupCCiE5ZQWDWoNuBKvq5PV2t9vUDNhqdGMAe2B6uOLMUvX-l8prVqSzJINXO4Pgf04YRzWYuLkvcJgCVRUvclFJJhL54h_y7p_bUT2k8xvX-bSt3niq05SpzGlebKj5HVQaLQ5GpzfXmVQ_ELw-ECRmxKuxhylGtfjy-f_Zi--H7Ms9dolgx2X0dto8rHgIFltQBx9jwO42Y0bVpmVu0lCbllG7lkmyZ_v3cyu66RH-F9NAE7M</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1289259685</pqid></control><display><type>article</type><title>Planar cell polarity enables posterior localization of nodal cilia and left-right axis determination during mouse and Xenopus embryogenesis</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Antic, Dragana ; Stubbs, Jennifer L ; Suyama, Kaye ; Kintner, Chris ; Scott, Matthew P ; Axelrod, Jeffrey D</creator><contributor>Riley, Bruce</contributor><creatorcontrib>Antic, Dragana ; Stubbs, Jennifer L ; Suyama, Kaye ; Kintner, Chris ; Scott, Matthew P ; Axelrod, Jeffrey D ; Riley, Bruce</creatorcontrib><description>Left-right asymmetry in vertebrates is initiated in an early embryonic structure called the ventral node in human and mouse, and the gastrocoel roof plate (GRP) in the frog. Within these structures, each epithelial cell bears a single motile cilium, and the concerted beating of these cilia produces a leftward fluid flow that is required to initiate left-right asymmetric gene expression. The leftward fluid flow is thought to result from the posterior tilt of the cilia, which protrude from near the posterior portion of each cell's apical surface. The cells, therefore, display a morphological planar polarization. Planar cell polarity (PCP) is manifested as the coordinated, polarized orientation of cells within epithelial sheets, or as directional cell migration and intercalation during convergent extension. A set of evolutionarily conserved proteins regulates PCP. Here, we provide evidence that vertebrate PCP proteins regulate planar polarity in the mouse ventral node and in the Xenopus gastrocoel roof plate. Asymmetric anterior localization of VANGL1 and PRICKLE2 (PK2) in mouse ventral node cells indicates that these cells are planar polarized by a conserved molecular mechanism. A weakly penetrant Vangl1 mutant phenotype suggests that compromised Vangl1 function may be associated with left-right laterality defects. Stronger functional evidence comes from the Xenopus GRP, where we show that perturbation of VANGL2 protein function disrupts the posterior localization of motile cilia that is required for leftward fluid flow, and causes aberrant expression of the left side-specific gene Nodal. The observation of anterior-posterior PCP in the mouse and in Xenopus embryonic organizers reflects a strong evolutionary conservation of this mechanism that is important for body plan determination.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0008999</identifier><identifier>PMID: 20126399</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Aberration ; Animals ; Asymmetry ; Attitude (inclination) ; Bioengineering ; Body Patterning - genetics ; Body Patterning - physiology ; Carrier Proteins - genetics ; Carrier Proteins - physiology ; Cell Biology ; Cell division ; Cell Line ; Cell migration ; Cell Polarity ; Cell surface ; Cilia ; Cilia - metabolism ; Cilia - physiology ; Conservation ; Defects ; Departments ; Developmental biology ; Developmental Biology/Embryology ; Developmental Biology/Morphogenesis and Cell Biology ; Drosophila ; Embryo, Mammalian - cytology ; Embryo, Mammalian - embryology ; Embryo, Mammalian - physiology ; Embryo, Nonmammalian - cytology ; Embryo, Nonmammalian - embryology ; Embryo, Nonmammalian - physiology ; Embryogenesis ; Embryonic development ; Embryonic growth stage ; Embryos ; Epithelial cells ; Evolutionary conservation ; Female ; Fluid dynamics ; Fluid flow ; Fluid mechanics ; Gene expression ; Gene Expression Regulation, Developmental ; Genetics ; Hemispheric laterality ; In Situ Hybridization ; Insects ; Laboratories ; LIM Domain Proteins ; Localization ; Male ; Mammals ; Medicine ; Membrane Proteins - genetics ; Membrane Proteins - physiology ; Mice ; Mice, Inbred C57BL ; Mice, Inbred Strains ; Mice, Knockout ; Morphogenesis ; Phenotypes ; Plates (structural members) ; Polarity ; Proteins ; Vertebrates ; Xenopus ; Xenopus laevis</subject><ispartof>PloS one, 2010-02, Vol.5 (2), p.e8999-e8999</ispartof><rights>COPYRIGHT 2010 Public Library of Science</rights><rights>2010 Antic et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Antic et al. 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c757t-89e96ac747353d0c5565ec5c6405a5a7c9aad636e3dfcbd14ba086a37063c9af3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2814853/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2814853/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20126399$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Riley, Bruce</contributor><creatorcontrib>Antic, Dragana</creatorcontrib><creatorcontrib>Stubbs, Jennifer L</creatorcontrib><creatorcontrib>Suyama, Kaye</creatorcontrib><creatorcontrib>Kintner, Chris</creatorcontrib><creatorcontrib>Scott, Matthew P</creatorcontrib><creatorcontrib>Axelrod, Jeffrey D</creatorcontrib><title>Planar cell polarity enables posterior localization of nodal cilia and left-right axis determination during mouse and Xenopus embryogenesis</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Left-right asymmetry in vertebrates is initiated in an early embryonic structure called the ventral node in human and mouse, and the gastrocoel roof plate (GRP) in the frog. Within these structures, each epithelial cell bears a single motile cilium, and the concerted beating of these cilia produces a leftward fluid flow that is required to initiate left-right asymmetric gene expression. The leftward fluid flow is thought to result from the posterior tilt of the cilia, which protrude from near the posterior portion of each cell's apical surface. The cells, therefore, display a morphological planar polarization. Planar cell polarity (PCP) is manifested as the coordinated, polarized orientation of cells within epithelial sheets, or as directional cell migration and intercalation during convergent extension. A set of evolutionarily conserved proteins regulates PCP. Here, we provide evidence that vertebrate PCP proteins regulate planar polarity in the mouse ventral node and in the Xenopus gastrocoel roof plate. Asymmetric anterior localization of VANGL1 and PRICKLE2 (PK2) in mouse ventral node cells indicates that these cells are planar polarized by a conserved molecular mechanism. A weakly penetrant Vangl1 mutant phenotype suggests that compromised Vangl1 function may be associated with left-right laterality defects. Stronger functional evidence comes from the Xenopus GRP, where we show that perturbation of VANGL2 protein function disrupts the posterior localization of motile cilia that is required for leftward fluid flow, and causes aberrant expression of the left side-specific gene Nodal. The observation of anterior-posterior PCP in the mouse and in Xenopus embryonic organizers reflects a strong evolutionary conservation of this mechanism that is important for body plan determination.</description><subject>Aberration</subject><subject>Animals</subject><subject>Asymmetry</subject><subject>Attitude (inclination)</subject><subject>Bioengineering</subject><subject>Body Patterning - genetics</subject><subject>Body Patterning - physiology</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - physiology</subject><subject>Cell Biology</subject><subject>Cell division</subject><subject>Cell Line</subject><subject>Cell migration</subject><subject>Cell Polarity</subject><subject>Cell surface</subject><subject>Cilia</subject><subject>Cilia - metabolism</subject><subject>Cilia - physiology</subject><subject>Conservation</subject><subject>Defects</subject><subject>Departments</subject><subject>Developmental biology</subject><subject>Developmental Biology/Embryology</subject><subject>Developmental Biology/Morphogenesis and Cell Biology</subject><subject>Drosophila</subject><subject>Embryo, Mammalian - cytology</subject><subject>Embryo, Mammalian - embryology</subject><subject>Embryo, Mammalian - physiology</subject><subject>Embryo, Nonmammalian - cytology</subject><subject>Embryo, Nonmammalian - embryology</subject><subject>Embryo, Nonmammalian - physiology</subject><subject>Embryogenesis</subject><subject>Embryonic development</subject><subject>Embryonic growth stage</subject><subject>Embryos</subject><subject>Epithelial cells</subject><subject>Evolutionary conservation</subject><subject>Female</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Genetics</subject><subject>Hemispheric laterality</subject><subject>In Situ Hybridization</subject><subject>Insects</subject><subject>Laboratories</subject><subject>LIM Domain Proteins</subject><subject>Localization</subject><subject>Male</subject><subject>Mammals</subject><subject>Medicine</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - physiology</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Inbred Strains</subject><subject>Mice, Knockout</subject><subject>Morphogenesis</subject><subject>Phenotypes</subject><subject>Plates (structural members)</subject><subject>Polarity</subject><subject>Proteins</subject><subject>Vertebrates</subject><subject>Xenopus</subject><subject>Xenopus laevis</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7rr6D0QDguLFjEnTps2NsCx-DCys-IV34TQ97WRJkzFpZce_4J82szO7zMheSC4aTp73TfomJ8ueMjpnvGJvLv0UHNj5yjucU0prKeW97JhJns9ETvn9vflR9ijGS0pLXgvxMDvKKcsFl_I4-_PJgoNANFpLVt5CMOOaoIPGYkyFOGIwPhDrNVjzG0bjHfEdcb4FS7SxBgi4lljsxlkw_XIkcGUiaTEJB-O2gnYKxvVk8FPEa_wHOr-aIsGhCWvfo8No4uPsQQc24pPd9yT79v7d17OPs_OLD4uz0_OZrspqnNUSpQBdFRUveUt1WYoSdalFQUsoodISoBVcIG873bSsaIDWAnhFBU9rHT_Jnm99V9ZHtcsxKpbXMi-lqMtELLZE6-FSrYIZIKyVB6OuCz70CsJotEXFCt7kVUnbWupCCiE5ZQWDWoNuBKvq5PV2t9vUDNhqdGMAe2B6uOLMUvX-l8prVqSzJINXO4Pgf04YRzWYuLkvcJgCVRUvclFJJhL54h_y7p_bUT2k8xvX-bSt3niq05SpzGlebKj5HVQaLQ5GpzfXmVQ_ELw-ECRmxKuxhylGtfjy-f_Zi--H7Ms9dolgx2X0dto8rHgIFltQBx9jwO42Y0bVpmVu0lCbllG7lkmyZ_v3cyu66RH-F9NAE7M</recordid><startdate>20100202</startdate><enddate>20100202</enddate><creator>Antic, Dragana</creator><creator>Stubbs, Jennifer L</creator><creator>Suyama, Kaye</creator><creator>Kintner, Chris</creator><creator>Scott, Matthew P</creator><creator>Axelrod, Jeffrey D</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20100202</creationdate><title>Planar cell polarity enables posterior localization of nodal cilia and left-right axis determination during mouse and Xenopus embryogenesis</title><author>Antic, Dragana ; Stubbs, Jennifer L ; Suyama, Kaye ; Kintner, Chris ; Scott, Matthew P ; Axelrod, Jeffrey D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c757t-89e96ac747353d0c5565ec5c6405a5a7c9aad636e3dfcbd14ba086a37063c9af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Aberration</topic><topic>Animals</topic><topic>Asymmetry</topic><topic>Attitude (inclination)</topic><topic>Bioengineering</topic><topic>Body Patterning - genetics</topic><topic>Body Patterning - physiology</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - physiology</topic><topic>Cell Biology</topic><topic>Cell division</topic><topic>Cell Line</topic><topic>Cell migration</topic><topic>Cell Polarity</topic><topic>Cell surface</topic><topic>Cilia</topic><topic>Cilia - metabolism</topic><topic>Cilia - physiology</topic><topic>Conservation</topic><topic>Defects</topic><topic>Departments</topic><topic>Developmental biology</topic><topic>Developmental Biology/Embryology</topic><topic>Developmental Biology/Morphogenesis and Cell Biology</topic><topic>Drosophila</topic><topic>Embryo, Mammalian - cytology</topic><topic>Embryo, Mammalian - embryology</topic><topic>Embryo, Mammalian - physiology</topic><topic>Embryo, Nonmammalian - cytology</topic><topic>Embryo, Nonmammalian - embryology</topic><topic>Embryo, Nonmammalian - physiology</topic><topic>Embryogenesis</topic><topic>Embryonic development</topic><topic>Embryonic growth stage</topic><topic>Embryos</topic><topic>Epithelial cells</topic><topic>Evolutionary conservation</topic><topic>Female</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Genetics</topic><topic>Hemispheric laterality</topic><topic>In Situ Hybridization</topic><topic>Insects</topic><topic>Laboratories</topic><topic>LIM Domain Proteins</topic><topic>Localization</topic><topic>Male</topic><topic>Mammals</topic><topic>Medicine</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - physiology</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Inbred Strains</topic><topic>Mice, Knockout</topic><topic>Morphogenesis</topic><topic>Phenotypes</topic><topic>Plates (structural members)</topic><topic>Polarity</topic><topic>Proteins</topic><topic>Vertebrates</topic><topic>Xenopus</topic><topic>Xenopus laevis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Antic, Dragana</creatorcontrib><creatorcontrib>Stubbs, Jennifer L</creatorcontrib><creatorcontrib>Suyama, Kaye</creatorcontrib><creatorcontrib>Kintner, Chris</creatorcontrib><creatorcontrib>Scott, Matthew P</creatorcontrib><creatorcontrib>Axelrod, Jeffrey D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Antic, Dragana</au><au>Stubbs, Jennifer L</au><au>Suyama, Kaye</au><au>Kintner, Chris</au><au>Scott, Matthew P</au><au>Axelrod, Jeffrey D</au><au>Riley, Bruce</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Planar cell polarity enables posterior localization of nodal cilia and left-right axis determination during mouse and Xenopus embryogenesis</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2010-02-02</date><risdate>2010</risdate><volume>5</volume><issue>2</issue><spage>e8999</spage><epage>e8999</epage><pages>e8999-e8999</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Left-right asymmetry in vertebrates is initiated in an early embryonic structure called the ventral node in human and mouse, and the gastrocoel roof plate (GRP) in the frog. Within these structures, each epithelial cell bears a single motile cilium, and the concerted beating of these cilia produces a leftward fluid flow that is required to initiate left-right asymmetric gene expression. The leftward fluid flow is thought to result from the posterior tilt of the cilia, which protrude from near the posterior portion of each cell's apical surface. The cells, therefore, display a morphological planar polarization. Planar cell polarity (PCP) is manifested as the coordinated, polarized orientation of cells within epithelial sheets, or as directional cell migration and intercalation during convergent extension. A set of evolutionarily conserved proteins regulates PCP. Here, we provide evidence that vertebrate PCP proteins regulate planar polarity in the mouse ventral node and in the Xenopus gastrocoel roof plate. Asymmetric anterior localization of VANGL1 and PRICKLE2 (PK2) in mouse ventral node cells indicates that these cells are planar polarized by a conserved molecular mechanism. A weakly penetrant Vangl1 mutant phenotype suggests that compromised Vangl1 function may be associated with left-right laterality defects. Stronger functional evidence comes from the Xenopus GRP, where we show that perturbation of VANGL2 protein function disrupts the posterior localization of motile cilia that is required for leftward fluid flow, and causes aberrant expression of the left side-specific gene Nodal. The observation of anterior-posterior PCP in the mouse and in Xenopus embryonic organizers reflects a strong evolutionary conservation of this mechanism that is important for body plan determination.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>20126399</pmid><doi>10.1371/journal.pone.0008999</doi><tpages>e8999</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2010-02, Vol.5 (2), p.e8999-e8999
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1289259685
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Aberration
Animals
Asymmetry
Attitude (inclination)
Bioengineering
Body Patterning - genetics
Body Patterning - physiology
Carrier Proteins - genetics
Carrier Proteins - physiology
Cell Biology
Cell division
Cell Line
Cell migration
Cell Polarity
Cell surface
Cilia
Cilia - metabolism
Cilia - physiology
Conservation
Defects
Departments
Developmental biology
Developmental Biology/Embryology
Developmental Biology/Morphogenesis and Cell Biology
Drosophila
Embryo, Mammalian - cytology
Embryo, Mammalian - embryology
Embryo, Mammalian - physiology
Embryo, Nonmammalian - cytology
Embryo, Nonmammalian - embryology
Embryo, Nonmammalian - physiology
Embryogenesis
Embryonic development
Embryonic growth stage
Embryos
Epithelial cells
Evolutionary conservation
Female
Fluid dynamics
Fluid flow
Fluid mechanics
Gene expression
Gene Expression Regulation, Developmental
Genetics
Hemispheric laterality
In Situ Hybridization
Insects
Laboratories
LIM Domain Proteins
Localization
Male
Mammals
Medicine
Membrane Proteins - genetics
Membrane Proteins - physiology
Mice
Mice, Inbred C57BL
Mice, Inbred Strains
Mice, Knockout
Morphogenesis
Phenotypes
Plates (structural members)
Polarity
Proteins
Vertebrates
Xenopus
Xenopus laevis
title Planar cell polarity enables posterior localization of nodal cilia and left-right axis determination during mouse and Xenopus embryogenesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T17%3A25%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Planar%20cell%20polarity%20enables%20posterior%20localization%20of%20nodal%20cilia%20and%20left-right%20axis%20determination%20during%20mouse%20and%20Xenopus%20embryogenesis&rft.jtitle=PloS%20one&rft.au=Antic,%20Dragana&rft.date=2010-02-02&rft.volume=5&rft.issue=2&rft.spage=e8999&rft.epage=e8999&rft.pages=e8999-e8999&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0008999&rft_dat=%3Cgale_plos_%3EA473920245%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1289259685&rft_id=info:pmid/20126399&rft_galeid=A473920245&rft_doaj_id=oai_doaj_org_article_143b2750d89c4966930141a8cacb6178&rfr_iscdi=true