Nanostructural and transcriptomic analyses of human saliva derived exosomes
Exosomes, derived from endocytic membrane vesicles are thought to participate in cell-cell communication and protein and RNA delivery. They are ubiquitous in most body fluids (breast milk, saliva, blood, urine, malignant ascites, amniotic, bronchoalveolar lavage, and synovial fluids). In particular,...
Gespeichert in:
Veröffentlicht in: | PloS one 2010-01, Vol.5 (1), p.e8577 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | e8577 |
container_title | PloS one |
container_volume | 5 |
creator | Palanisamy, Viswanathan Sharma, Shivani Deshpande, Amit Zhou, Hui Gimzewski, James Wong, David T |
description | Exosomes, derived from endocytic membrane vesicles are thought to participate in cell-cell communication and protein and RNA delivery. They are ubiquitous in most body fluids (breast milk, saliva, blood, urine, malignant ascites, amniotic, bronchoalveolar lavage, and synovial fluids). In particular, exosomes secreted in human saliva contain proteins and nucleic acids that could be exploited for diagnostic purposes. To investigate this potential use, we isolated exosomes from human saliva and characterized their structural and transcriptome contents.
Exosomes were purified by differential ultracentrifugation and identified by immunoelectron microscopy (EM), flow cytometry, and Western blot with CD63 and Alix antibodies. We then described the morphology, shape, size distribution, and density using atomic force microscopy (AFM). Microarray analysis revealed that 509 mRNA core transcripts are relatively stable and present in the exosomes. Exosomal mRNA stability was determined by detergent lysis with RNase A treatment. In vitro, fluorescently labeled saliva exosomes could communicate with human keratinocytes, transferring their genetic information to human oral keratinocytes to alter gene expression at a new location.
Our findings are consistent with the hypothesis that exosomes shuttle RNA between cells and that the RNAs present in the exosomes may be a possible resource for disease diagnostics. |
doi_str_mv | 10.1371/journal.pone.0008577 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1289258045</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A473921436</galeid><doaj_id>oai_doaj_org_article_d71212b4cffc4d24a89ee88db265f187</doaj_id><sourcerecordid>A473921436</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6067-29039dea43d92f956934b5f7ba8b0a485989ef62ab6ec05b27437f4a10a33bef3</originalsourceid><addsrcrecordid>eNqNkttrFDEUxgdRbK3-B6IDguDDrrlNMnkRSvGyWCx4ew1nctlNmZmsyczS_vdm3WnZAQXJQ8LJ73wnfPmK4jlGS0wFfnsdxthDu9yG3i4RQnUlxIPiFEtKFpwg-vDofFI8SekaoYrWnD8uTkg-EobZafH5C_QhDXHUwxihLaE35RChTzr67RA6r3MJ2ttkUxlcuRk76MsErd9BaWz0O2tKexNS6Gx6Wjxy0Cb7bNrPih8f3n-_-LS4vPq4uji_XGiOuFgQiag0Fhg1kjhZcUlZUznRQN0gYHUla2kdJ9Bwq1HVEMGocAwwAkob6-hZ8fKgu21DUpMPSWFSS1LViFWZWB0IE-BabaPvIN6qAF79KYS4VhAHr1urjMAEk4Zp5zQzhEEebuvaNIRXDtcia72bpo1NZ422ffannYnOb3q_UeuwU0RIwdFe4NUkEMOv0abhH0-eqDXkV_nehSymO5-0OmeCSoIZ5Zla_oXKy9j8VTkJzuf6rOHNrCEzg70Z1jCmpFbfvv4_e_Vzzr4-YjcW2mGTQjsOPvRpDrIDqGNIKVp37xxGah_kOzfUPshqCnJue3Hs-n3TXXLpb6mv7lA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1289258045</pqid></control><display><type>article</type><title>Nanostructural and transcriptomic analyses of human saliva derived exosomes</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Palanisamy, Viswanathan ; Sharma, Shivani ; Deshpande, Amit ; Zhou, Hui ; Gimzewski, James ; Wong, David T</creator><creatorcontrib>Palanisamy, Viswanathan ; Sharma, Shivani ; Deshpande, Amit ; Zhou, Hui ; Gimzewski, James ; Wong, David T</creatorcontrib><description>Exosomes, derived from endocytic membrane vesicles are thought to participate in cell-cell communication and protein and RNA delivery. They are ubiquitous in most body fluids (breast milk, saliva, blood, urine, malignant ascites, amniotic, bronchoalveolar lavage, and synovial fluids). In particular, exosomes secreted in human saliva contain proteins and nucleic acids that could be exploited for diagnostic purposes. To investigate this potential use, we isolated exosomes from human saliva and characterized their structural and transcriptome contents.
Exosomes were purified by differential ultracentrifugation and identified by immunoelectron microscopy (EM), flow cytometry, and Western blot with CD63 and Alix antibodies. We then described the morphology, shape, size distribution, and density using atomic force microscopy (AFM). Microarray analysis revealed that 509 mRNA core transcripts are relatively stable and present in the exosomes. Exosomal mRNA stability was determined by detergent lysis with RNase A treatment. In vitro, fluorescently labeled saliva exosomes could communicate with human keratinocytes, transferring their genetic information to human oral keratinocytes to alter gene expression at a new location.
Our findings are consistent with the hypothesis that exosomes shuttle RNA between cells and that the RNAs present in the exosomes may be a possible resource for disease diagnostics.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0008577</identifier><identifier>PMID: 20052414</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Alveoli ; Analysis ; Antibodies ; Aquaporins ; Ascites ; Atomic force microscopy ; Biochemistry ; Biochemistry/Cell Signaling and Trafficking Structures ; Biomarkers ; Blotting, Western ; Body fluids ; Breast milk ; Bronchus ; CD63 antigen ; Cell Biology/Cytoskeleton ; Cell Biology/Extra-Cellular Matrix ; Cell Biology/Gene Expression ; Cell interactions ; Cell signaling ; Chromatography ; Cytometry ; Dendritic cells ; Diagnostic systems ; DNA microarrays ; Exosomes ; Exosomes - metabolism ; Flow cytometry ; Fluid flow ; Fluids ; Gene expression ; Gene Expression Profiling ; Genes ; Genetics and Genomics ; Humans ; Immunoelectron microscopy ; Keratinocytes ; Kinases ; Lysis ; Mass spectrometry ; Membrane vesicles ; Messenger RNA ; Microscopy ; Microscopy, Atomic Force ; Milk ; Molecular Biology ; mRNA stability ; Nanostructures ; Nucleic acids ; Oral cancer ; Particle size distribution ; Plasma ; Proteins ; Proteomics ; Ribonuclease ; Ribonucleic acid ; RNA ; Rodents ; Saliva ; Saliva - metabolism ; Scientific imaging ; Size distribution ; Stem cells ; Stress concentration ; Trends ; Ultracentrifugation ; Urine</subject><ispartof>PloS one, 2010-01, Vol.5 (1), p.e8577</ispartof><rights>COPYRIGHT 2010 Public Library of Science</rights><rights>2010 Palanisamy et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Palanisamy et al. 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6067-29039dea43d92f956934b5f7ba8b0a485989ef62ab6ec05b27437f4a10a33bef3</citedby><cites>FETCH-LOGICAL-c6067-29039dea43d92f956934b5f7ba8b0a485989ef62ab6ec05b27437f4a10a33bef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2797607/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2797607/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20052414$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Palanisamy, Viswanathan</creatorcontrib><creatorcontrib>Sharma, Shivani</creatorcontrib><creatorcontrib>Deshpande, Amit</creatorcontrib><creatorcontrib>Zhou, Hui</creatorcontrib><creatorcontrib>Gimzewski, James</creatorcontrib><creatorcontrib>Wong, David T</creatorcontrib><title>Nanostructural and transcriptomic analyses of human saliva derived exosomes</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Exosomes, derived from endocytic membrane vesicles are thought to participate in cell-cell communication and protein and RNA delivery. They are ubiquitous in most body fluids (breast milk, saliva, blood, urine, malignant ascites, amniotic, bronchoalveolar lavage, and synovial fluids). In particular, exosomes secreted in human saliva contain proteins and nucleic acids that could be exploited for diagnostic purposes. To investigate this potential use, we isolated exosomes from human saliva and characterized their structural and transcriptome contents.
Exosomes were purified by differential ultracentrifugation and identified by immunoelectron microscopy (EM), flow cytometry, and Western blot with CD63 and Alix antibodies. We then described the morphology, shape, size distribution, and density using atomic force microscopy (AFM). Microarray analysis revealed that 509 mRNA core transcripts are relatively stable and present in the exosomes. Exosomal mRNA stability was determined by detergent lysis with RNase A treatment. In vitro, fluorescently labeled saliva exosomes could communicate with human keratinocytes, transferring their genetic information to human oral keratinocytes to alter gene expression at a new location.
Our findings are consistent with the hypothesis that exosomes shuttle RNA between cells and that the RNAs present in the exosomes may be a possible resource for disease diagnostics.</description><subject>Alveoli</subject><subject>Analysis</subject><subject>Antibodies</subject><subject>Aquaporins</subject><subject>Ascites</subject><subject>Atomic force microscopy</subject><subject>Biochemistry</subject><subject>Biochemistry/Cell Signaling and Trafficking Structures</subject><subject>Biomarkers</subject><subject>Blotting, Western</subject><subject>Body fluids</subject><subject>Breast milk</subject><subject>Bronchus</subject><subject>CD63 antigen</subject><subject>Cell Biology/Cytoskeleton</subject><subject>Cell Biology/Extra-Cellular Matrix</subject><subject>Cell Biology/Gene Expression</subject><subject>Cell interactions</subject><subject>Cell signaling</subject><subject>Chromatography</subject><subject>Cytometry</subject><subject>Dendritic cells</subject><subject>Diagnostic systems</subject><subject>DNA microarrays</subject><subject>Exosomes</subject><subject>Exosomes - metabolism</subject><subject>Flow cytometry</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Genes</subject><subject>Genetics and Genomics</subject><subject>Humans</subject><subject>Immunoelectron microscopy</subject><subject>Keratinocytes</subject><subject>Kinases</subject><subject>Lysis</subject><subject>Mass spectrometry</subject><subject>Membrane vesicles</subject><subject>Messenger RNA</subject><subject>Microscopy</subject><subject>Microscopy, Atomic Force</subject><subject>Milk</subject><subject>Molecular Biology</subject><subject>mRNA stability</subject><subject>Nanostructures</subject><subject>Nucleic acids</subject><subject>Oral cancer</subject><subject>Particle size distribution</subject><subject>Plasma</subject><subject>Proteins</subject><subject>Proteomics</subject><subject>Ribonuclease</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Rodents</subject><subject>Saliva</subject><subject>Saliva - metabolism</subject><subject>Scientific imaging</subject><subject>Size distribution</subject><subject>Stem cells</subject><subject>Stress concentration</subject><subject>Trends</subject><subject>Ultracentrifugation</subject><subject>Urine</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNkttrFDEUxgdRbK3-B6IDguDDrrlNMnkRSvGyWCx4ew1nctlNmZmsyczS_vdm3WnZAQXJQ8LJ73wnfPmK4jlGS0wFfnsdxthDu9yG3i4RQnUlxIPiFEtKFpwg-vDofFI8SekaoYrWnD8uTkg-EobZafH5C_QhDXHUwxihLaE35RChTzr67RA6r3MJ2ttkUxlcuRk76MsErd9BaWz0O2tKexNS6Gx6Wjxy0Cb7bNrPih8f3n-_-LS4vPq4uji_XGiOuFgQiag0Fhg1kjhZcUlZUznRQN0gYHUla2kdJ9Bwq1HVEMGocAwwAkob6-hZ8fKgu21DUpMPSWFSS1LViFWZWB0IE-BabaPvIN6qAF79KYS4VhAHr1urjMAEk4Zp5zQzhEEebuvaNIRXDtcia72bpo1NZ422ffannYnOb3q_UeuwU0RIwdFe4NUkEMOv0abhH0-eqDXkV_nehSymO5-0OmeCSoIZ5Zla_oXKy9j8VTkJzuf6rOHNrCEzg70Z1jCmpFbfvv4_e_Vzzr4-YjcW2mGTQjsOPvRpDrIDqGNIKVp37xxGah_kOzfUPshqCnJue3Hs-n3TXXLpb6mv7lA</recordid><startdate>20100105</startdate><enddate>20100105</enddate><creator>Palanisamy, Viswanathan</creator><creator>Sharma, Shivani</creator><creator>Deshpande, Amit</creator><creator>Zhou, Hui</creator><creator>Gimzewski, James</creator><creator>Wong, David T</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20100105</creationdate><title>Nanostructural and transcriptomic analyses of human saliva derived exosomes</title><author>Palanisamy, Viswanathan ; Sharma, Shivani ; Deshpande, Amit ; Zhou, Hui ; Gimzewski, James ; Wong, David T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6067-29039dea43d92f956934b5f7ba8b0a485989ef62ab6ec05b27437f4a10a33bef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Alveoli</topic><topic>Analysis</topic><topic>Antibodies</topic><topic>Aquaporins</topic><topic>Ascites</topic><topic>Atomic force microscopy</topic><topic>Biochemistry</topic><topic>Biochemistry/Cell Signaling and Trafficking Structures</topic><topic>Biomarkers</topic><topic>Blotting, Western</topic><topic>Body fluids</topic><topic>Breast milk</topic><topic>Bronchus</topic><topic>CD63 antigen</topic><topic>Cell Biology/Cytoskeleton</topic><topic>Cell Biology/Extra-Cellular Matrix</topic><topic>Cell Biology/Gene Expression</topic><topic>Cell interactions</topic><topic>Cell signaling</topic><topic>Chromatography</topic><topic>Cytometry</topic><topic>Dendritic cells</topic><topic>Diagnostic systems</topic><topic>DNA microarrays</topic><topic>Exosomes</topic><topic>Exosomes - metabolism</topic><topic>Flow cytometry</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Genes</topic><topic>Genetics and Genomics</topic><topic>Humans</topic><topic>Immunoelectron microscopy</topic><topic>Keratinocytes</topic><topic>Kinases</topic><topic>Lysis</topic><topic>Mass spectrometry</topic><topic>Membrane vesicles</topic><topic>Messenger RNA</topic><topic>Microscopy</topic><topic>Microscopy, Atomic Force</topic><topic>Milk</topic><topic>Molecular Biology</topic><topic>mRNA stability</topic><topic>Nanostructures</topic><topic>Nucleic acids</topic><topic>Oral cancer</topic><topic>Particle size distribution</topic><topic>Plasma</topic><topic>Proteins</topic><topic>Proteomics</topic><topic>Ribonuclease</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Rodents</topic><topic>Saliva</topic><topic>Saliva - metabolism</topic><topic>Scientific imaging</topic><topic>Size distribution</topic><topic>Stem cells</topic><topic>Stress concentration</topic><topic>Trends</topic><topic>Ultracentrifugation</topic><topic>Urine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Palanisamy, Viswanathan</creatorcontrib><creatorcontrib>Sharma, Shivani</creatorcontrib><creatorcontrib>Deshpande, Amit</creatorcontrib><creatorcontrib>Zhou, Hui</creatorcontrib><creatorcontrib>Gimzewski, James</creatorcontrib><creatorcontrib>Wong, David T</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Palanisamy, Viswanathan</au><au>Sharma, Shivani</au><au>Deshpande, Amit</au><au>Zhou, Hui</au><au>Gimzewski, James</au><au>Wong, David T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanostructural and transcriptomic analyses of human saliva derived exosomes</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2010-01-05</date><risdate>2010</risdate><volume>5</volume><issue>1</issue><spage>e8577</spage><pages>e8577-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Exosomes, derived from endocytic membrane vesicles are thought to participate in cell-cell communication and protein and RNA delivery. They are ubiquitous in most body fluids (breast milk, saliva, blood, urine, malignant ascites, amniotic, bronchoalveolar lavage, and synovial fluids). In particular, exosomes secreted in human saliva contain proteins and nucleic acids that could be exploited for diagnostic purposes. To investigate this potential use, we isolated exosomes from human saliva and characterized their structural and transcriptome contents.
Exosomes were purified by differential ultracentrifugation and identified by immunoelectron microscopy (EM), flow cytometry, and Western blot with CD63 and Alix antibodies. We then described the morphology, shape, size distribution, and density using atomic force microscopy (AFM). Microarray analysis revealed that 509 mRNA core transcripts are relatively stable and present in the exosomes. Exosomal mRNA stability was determined by detergent lysis with RNase A treatment. In vitro, fluorescently labeled saliva exosomes could communicate with human keratinocytes, transferring their genetic information to human oral keratinocytes to alter gene expression at a new location.
Our findings are consistent with the hypothesis that exosomes shuttle RNA between cells and that the RNAs present in the exosomes may be a possible resource for disease diagnostics.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>20052414</pmid><doi>10.1371/journal.pone.0008577</doi><tpages>e8577</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2010-01, Vol.5 (1), p.e8577 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1289258045 |
source | Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Alveoli Analysis Antibodies Aquaporins Ascites Atomic force microscopy Biochemistry Biochemistry/Cell Signaling and Trafficking Structures Biomarkers Blotting, Western Body fluids Breast milk Bronchus CD63 antigen Cell Biology/Cytoskeleton Cell Biology/Extra-Cellular Matrix Cell Biology/Gene Expression Cell interactions Cell signaling Chromatography Cytometry Dendritic cells Diagnostic systems DNA microarrays Exosomes Exosomes - metabolism Flow cytometry Fluid flow Fluids Gene expression Gene Expression Profiling Genes Genetics and Genomics Humans Immunoelectron microscopy Keratinocytes Kinases Lysis Mass spectrometry Membrane vesicles Messenger RNA Microscopy Microscopy, Atomic Force Milk Molecular Biology mRNA stability Nanostructures Nucleic acids Oral cancer Particle size distribution Plasma Proteins Proteomics Ribonuclease Ribonucleic acid RNA Rodents Saliva Saliva - metabolism Scientific imaging Size distribution Stem cells Stress concentration Trends Ultracentrifugation Urine |
title | Nanostructural and transcriptomic analyses of human saliva derived exosomes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T00%3A42%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanostructural%20and%20transcriptomic%20analyses%20of%20human%20saliva%20derived%20exosomes&rft.jtitle=PloS%20one&rft.au=Palanisamy,%20Viswanathan&rft.date=2010-01-05&rft.volume=5&rft.issue=1&rft.spage=e8577&rft.pages=e8577-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0008577&rft_dat=%3Cgale_plos_%3EA473921436%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1289258045&rft_id=info:pmid/20052414&rft_galeid=A473921436&rft_doaj_id=oai_doaj_org_article_d71212b4cffc4d24a89ee88db265f187&rfr_iscdi=true |