Reinforcement versus fluidization in cytoskeletal mechanoresponsiveness

Every adherent eukaryotic cell exerts appreciable traction forces upon its substrate. Moreover, every resident cell within the heart, great vessels, bladder, gut or lung routinely experiences large periodic stretches. As an acute response to such stretches the cytoskeleton can stiffen, increase trac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2009-05, Vol.4 (5), p.e5486-e5486
Hauptverfasser: Krishnan, Ramaswamy, Park, Chan Young, Lin, Yu-Chun, Mead, Jere, Jaspers, Richard T, Trepat, Xavier, Lenormand, Guillaume, Tambe, Dhananjay, Smolensky, Alexander V, Knoll, Andrew H, Butler, James P, Fredberg, Jeffrey J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e5486
container_issue 5
container_start_page e5486
container_title PloS one
container_volume 4
creator Krishnan, Ramaswamy
Park, Chan Young
Lin, Yu-Chun
Mead, Jere
Jaspers, Richard T
Trepat, Xavier
Lenormand, Guillaume
Tambe, Dhananjay
Smolensky, Alexander V
Knoll, Andrew H
Butler, James P
Fredberg, Jeffrey J
description Every adherent eukaryotic cell exerts appreciable traction forces upon its substrate. Moreover, every resident cell within the heart, great vessels, bladder, gut or lung routinely experiences large periodic stretches. As an acute response to such stretches the cytoskeleton can stiffen, increase traction forces and reinforce, as reported by some, or can soften and fluidize, as reported more recently by our laboratory, but in any given circumstance it remains unknown which response might prevail or why. Using a novel nanotechnology, we show here that in loading conditions expected in most physiological circumstances the localized reinforcement response fails to scale up to the level of homogeneous cell stretch; fluidization trumps reinforcement. Whereas the reinforcement response is known to be mediated by upstream mechanosensing and downstream signaling, results presented here show the fluidization response to be altogether novel: it is a direct physical effect of mechanical force acting upon a structural lattice that is soft and fragile. Cytoskeletal softness and fragility, we argue, is consistent with early evolutionary adaptations of the eukaryotic cell to material properties of a soft inert microenvironment.
doi_str_mv 10.1371/journal.pone.0005486
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1289214986</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A473179625</galeid><doaj_id>oai_doaj_org_article_23799046e6ae4143a519145515d80ed6</doaj_id><sourcerecordid>A473179625</sourcerecordid><originalsourceid>FETCH-LOGICAL-c704t-f2f2b36242db1b660331b469b89c6eef6a8e638fca512eba3c83607dacf6c8ef3</originalsourceid><addsrcrecordid>eNqNkl2L1DAUhoso7jr6D0QHhAUvZsxX0_ZGWBZdBxYW1o_bkKYnMxnTZjZJB9dfb7pT16l4IaU0TZ73nJxz3ix7idES0wK_27red9Iud66DJUIoZyV_lJ3iipIFJ4g-PlqfZM9C2CaGlpw_zU5wxQjLET7NLm_AdNp5BS10cb4HH_ow17Y3jfkpo3Hd3HRzdRdd-A4WorTzFtRGds5DSKmD2UMHITzPnmhpA7wYv7Ps68cPXy4-La6uL1cX51cLVSAWF5poUlNOGGlqXHOOKMU141VdVooDaC5L4LTUSuaYQC2pKilHRSOV5qoETWfZ60PcnXVBjD0IApOyIphVJU_E6kA0Tm7FzptW-jvhpBH3G86vhfTRKAuC0KKqEOPAJTDMaEpaYZbnOG9KBM0Q6_2Yra9baFRqkZd2EnR60pmNWLu9ILzIUapuluFDABV6JTwo8ErGe-HDz_ASVBBBcBoVTpqzMal3tz2EKFoTFFgrO3B9ELxIIGFD8Dd_gf_ux_JArWUqeRh2uqlKTwOtUck82qT9c1ZQXFSc5EnwdiJITIQfcS37EMTq883_s9ffpuzZEbsBaeMmONsPJgtTkI1N8y4ED_qh4RiJwfu_6xSD98Xo_SR7dTysP6LR7PQXaZIAUQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1289214986</pqid></control><display><type>article</type><title>Reinforcement versus fluidization in cytoskeletal mechanoresponsiveness</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>Recercat</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Krishnan, Ramaswamy ; Park, Chan Young ; Lin, Yu-Chun ; Mead, Jere ; Jaspers, Richard T ; Trepat, Xavier ; Lenormand, Guillaume ; Tambe, Dhananjay ; Smolensky, Alexander V ; Knoll, Andrew H ; Butler, James P ; Fredberg, Jeffrey J</creator><contributor>Heintzmann, Rainer</contributor><creatorcontrib>Krishnan, Ramaswamy ; Park, Chan Young ; Lin, Yu-Chun ; Mead, Jere ; Jaspers, Richard T ; Trepat, Xavier ; Lenormand, Guillaume ; Tambe, Dhananjay ; Smolensky, Alexander V ; Knoll, Andrew H ; Butler, James P ; Fredberg, Jeffrey J ; Heintzmann, Rainer</creatorcontrib><description>Every adherent eukaryotic cell exerts appreciable traction forces upon its substrate. Moreover, every resident cell within the heart, great vessels, bladder, gut or lung routinely experiences large periodic stretches. As an acute response to such stretches the cytoskeleton can stiffen, increase traction forces and reinforce, as reported by some, or can soften and fluidize, as reported more recently by our laboratory, but in any given circumstance it remains unknown which response might prevail or why. Using a novel nanotechnology, we show here that in loading conditions expected in most physiological circumstances the localized reinforcement response fails to scale up to the level of homogeneous cell stretch; fluidization trumps reinforcement. Whereas the reinforcement response is known to be mediated by upstream mechanosensing and downstream signaling, results presented here show the fluidization response to be altogether novel: it is a direct physical effect of mechanical force acting upon a structural lattice that is soft and fragile. Cytoskeletal softness and fragility, we argue, is consistent with early evolutionary adaptations of the eukaryotic cell to material properties of a soft inert microenvironment.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0005486</identifier><identifier>PMID: 19424501</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adaptation ; Adaptations ; Biomechanical Phenomena ; Biophysics ; Biophysics/Experimental Biophysical Methods ; Bladder ; Blood vessels ; Cell Biology ; Cell Biology/Cytoskeleton ; Cells, Cultured ; Cellular control mechanisms ; Citosquelet ; Colorectal cancer ; Cytoskeletal proteins ; Cytoskeleton ; Cytoskeleton - physiology ; Fluidization ; Fluidizing ; Fragility ; Homeostasis ; Humans ; Lungs ; Mechanics ; Mechanotransduction, Cellular ; Metabolism ; Metastasis ; Muscle contraction ; Myocytes, Smooth Muscle - cytology ; Nanotechnology ; Physiology ; Physiology/Respiratory Physiology ; Polymerization ; Proteïnes citosquelètiques ; Public health ; Regulació cel·lular ; Reinforcement ; Rheology ; Science ; Smooth muscle ; Softness ; Stress, Mechanical ; Traction ; Urinary bladder</subject><ispartof>PloS one, 2009-05, Vol.4 (5), p.e5486-e5486</ispartof><rights>COPYRIGHT 2009 Public Library of Science</rights><rights>2009 Krishnan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>cc-by (c) Krishnan, Ramaswamy et al., 2009 info:eu-repo/semantics/openAccess &lt;a href="http://creativecommons.org/licenses/by/3.0/es"&gt;http://creativecommons.org/licenses/by/3.0/es&lt;/a&gt;</rights><rights>Krishnan et al. 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c704t-f2f2b36242db1b660331b469b89c6eef6a8e638fca512eba3c83607dacf6c8ef3</citedby><cites>FETCH-LOGICAL-c704t-f2f2b36242db1b660331b469b89c6eef6a8e638fca512eba3c83607dacf6c8ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2675060/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2675060/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,26974,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19424501$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Heintzmann, Rainer</contributor><creatorcontrib>Krishnan, Ramaswamy</creatorcontrib><creatorcontrib>Park, Chan Young</creatorcontrib><creatorcontrib>Lin, Yu-Chun</creatorcontrib><creatorcontrib>Mead, Jere</creatorcontrib><creatorcontrib>Jaspers, Richard T</creatorcontrib><creatorcontrib>Trepat, Xavier</creatorcontrib><creatorcontrib>Lenormand, Guillaume</creatorcontrib><creatorcontrib>Tambe, Dhananjay</creatorcontrib><creatorcontrib>Smolensky, Alexander V</creatorcontrib><creatorcontrib>Knoll, Andrew H</creatorcontrib><creatorcontrib>Butler, James P</creatorcontrib><creatorcontrib>Fredberg, Jeffrey J</creatorcontrib><title>Reinforcement versus fluidization in cytoskeletal mechanoresponsiveness</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Every adherent eukaryotic cell exerts appreciable traction forces upon its substrate. Moreover, every resident cell within the heart, great vessels, bladder, gut or lung routinely experiences large periodic stretches. As an acute response to such stretches the cytoskeleton can stiffen, increase traction forces and reinforce, as reported by some, or can soften and fluidize, as reported more recently by our laboratory, but in any given circumstance it remains unknown which response might prevail or why. Using a novel nanotechnology, we show here that in loading conditions expected in most physiological circumstances the localized reinforcement response fails to scale up to the level of homogeneous cell stretch; fluidization trumps reinforcement. Whereas the reinforcement response is known to be mediated by upstream mechanosensing and downstream signaling, results presented here show the fluidization response to be altogether novel: it is a direct physical effect of mechanical force acting upon a structural lattice that is soft and fragile. Cytoskeletal softness and fragility, we argue, is consistent with early evolutionary adaptations of the eukaryotic cell to material properties of a soft inert microenvironment.</description><subject>Adaptation</subject><subject>Adaptations</subject><subject>Biomechanical Phenomena</subject><subject>Biophysics</subject><subject>Biophysics/Experimental Biophysical Methods</subject><subject>Bladder</subject><subject>Blood vessels</subject><subject>Cell Biology</subject><subject>Cell Biology/Cytoskeleton</subject><subject>Cells, Cultured</subject><subject>Cellular control mechanisms</subject><subject>Citosquelet</subject><subject>Colorectal cancer</subject><subject>Cytoskeletal proteins</subject><subject>Cytoskeleton</subject><subject>Cytoskeleton - physiology</subject><subject>Fluidization</subject><subject>Fluidizing</subject><subject>Fragility</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Lungs</subject><subject>Mechanics</subject><subject>Mechanotransduction, Cellular</subject><subject>Metabolism</subject><subject>Metastasis</subject><subject>Muscle contraction</subject><subject>Myocytes, Smooth Muscle - cytology</subject><subject>Nanotechnology</subject><subject>Physiology</subject><subject>Physiology/Respiratory Physiology</subject><subject>Polymerization</subject><subject>Proteïnes citosquelètiques</subject><subject>Public health</subject><subject>Regulació cel·lular</subject><subject>Reinforcement</subject><subject>Rheology</subject><subject>Science</subject><subject>Smooth muscle</subject><subject>Softness</subject><subject>Stress, Mechanical</subject><subject>Traction</subject><subject>Urinary bladder</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>XX2</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAUhoso7jr6D0QHhAUvZsxX0_ZGWBZdBxYW1o_bkKYnMxnTZjZJB9dfb7pT16l4IaU0TZ73nJxz3ix7idES0wK_27red9Iud66DJUIoZyV_lJ3iipIFJ4g-PlqfZM9C2CaGlpw_zU5wxQjLET7NLm_AdNp5BS10cb4HH_ow17Y3jfkpo3Hd3HRzdRdd-A4WorTzFtRGds5DSKmD2UMHITzPnmhpA7wYv7Ps68cPXy4-La6uL1cX51cLVSAWF5poUlNOGGlqXHOOKMU141VdVooDaC5L4LTUSuaYQC2pKilHRSOV5qoETWfZ60PcnXVBjD0IApOyIphVJU_E6kA0Tm7FzptW-jvhpBH3G86vhfTRKAuC0KKqEOPAJTDMaEpaYZbnOG9KBM0Q6_2Yra9baFRqkZd2EnR60pmNWLu9ILzIUapuluFDABV6JTwo8ErGe-HDz_ASVBBBcBoVTpqzMal3tz2EKFoTFFgrO3B9ELxIIGFD8Dd_gf_ux_JArWUqeRh2uqlKTwOtUck82qT9c1ZQXFSc5EnwdiJITIQfcS37EMTq883_s9ffpuzZEbsBaeMmONsPJgtTkI1N8y4ED_qh4RiJwfu_6xSD98Xo_SR7dTysP6LR7PQXaZIAUQ</recordid><startdate>20090508</startdate><enddate>20090508</enddate><creator>Krishnan, Ramaswamy</creator><creator>Park, Chan Young</creator><creator>Lin, Yu-Chun</creator><creator>Mead, Jere</creator><creator>Jaspers, Richard T</creator><creator>Trepat, Xavier</creator><creator>Lenormand, Guillaume</creator><creator>Tambe, Dhananjay</creator><creator>Smolensky, Alexander V</creator><creator>Knoll, Andrew H</creator><creator>Butler, James P</creator><creator>Fredberg, Jeffrey J</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>XX2</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20090508</creationdate><title>Reinforcement versus fluidization in cytoskeletal mechanoresponsiveness</title><author>Krishnan, Ramaswamy ; Park, Chan Young ; Lin, Yu-Chun ; Mead, Jere ; Jaspers, Richard T ; Trepat, Xavier ; Lenormand, Guillaume ; Tambe, Dhananjay ; Smolensky, Alexander V ; Knoll, Andrew H ; Butler, James P ; Fredberg, Jeffrey J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c704t-f2f2b36242db1b660331b469b89c6eef6a8e638fca512eba3c83607dacf6c8ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Adaptation</topic><topic>Adaptations</topic><topic>Biomechanical Phenomena</topic><topic>Biophysics</topic><topic>Biophysics/Experimental Biophysical Methods</topic><topic>Bladder</topic><topic>Blood vessels</topic><topic>Cell Biology</topic><topic>Cell Biology/Cytoskeleton</topic><topic>Cells, Cultured</topic><topic>Cellular control mechanisms</topic><topic>Citosquelet</topic><topic>Colorectal cancer</topic><topic>Cytoskeletal proteins</topic><topic>Cytoskeleton</topic><topic>Cytoskeleton - physiology</topic><topic>Fluidization</topic><topic>Fluidizing</topic><topic>Fragility</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Lungs</topic><topic>Mechanics</topic><topic>Mechanotransduction, Cellular</topic><topic>Metabolism</topic><topic>Metastasis</topic><topic>Muscle contraction</topic><topic>Myocytes, Smooth Muscle - cytology</topic><topic>Nanotechnology</topic><topic>Physiology</topic><topic>Physiology/Respiratory Physiology</topic><topic>Polymerization</topic><topic>Proteïnes citosquelètiques</topic><topic>Public health</topic><topic>Regulació cel·lular</topic><topic>Reinforcement</topic><topic>Rheology</topic><topic>Science</topic><topic>Smooth muscle</topic><topic>Softness</topic><topic>Stress, Mechanical</topic><topic>Traction</topic><topic>Urinary bladder</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krishnan, Ramaswamy</creatorcontrib><creatorcontrib>Park, Chan Young</creatorcontrib><creatorcontrib>Lin, Yu-Chun</creatorcontrib><creatorcontrib>Mead, Jere</creatorcontrib><creatorcontrib>Jaspers, Richard T</creatorcontrib><creatorcontrib>Trepat, Xavier</creatorcontrib><creatorcontrib>Lenormand, Guillaume</creatorcontrib><creatorcontrib>Tambe, Dhananjay</creatorcontrib><creatorcontrib>Smolensky, Alexander V</creatorcontrib><creatorcontrib>Knoll, Andrew H</creatorcontrib><creatorcontrib>Butler, James P</creatorcontrib><creatorcontrib>Fredberg, Jeffrey J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Recercat</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krishnan, Ramaswamy</au><au>Park, Chan Young</au><au>Lin, Yu-Chun</au><au>Mead, Jere</au><au>Jaspers, Richard T</au><au>Trepat, Xavier</au><au>Lenormand, Guillaume</au><au>Tambe, Dhananjay</au><au>Smolensky, Alexander V</au><au>Knoll, Andrew H</au><au>Butler, James P</au><au>Fredberg, Jeffrey J</au><au>Heintzmann, Rainer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reinforcement versus fluidization in cytoskeletal mechanoresponsiveness</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2009-05-08</date><risdate>2009</risdate><volume>4</volume><issue>5</issue><spage>e5486</spage><epage>e5486</epage><pages>e5486-e5486</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Every adherent eukaryotic cell exerts appreciable traction forces upon its substrate. Moreover, every resident cell within the heart, great vessels, bladder, gut or lung routinely experiences large periodic stretches. As an acute response to such stretches the cytoskeleton can stiffen, increase traction forces and reinforce, as reported by some, or can soften and fluidize, as reported more recently by our laboratory, but in any given circumstance it remains unknown which response might prevail or why. Using a novel nanotechnology, we show here that in loading conditions expected in most physiological circumstances the localized reinforcement response fails to scale up to the level of homogeneous cell stretch; fluidization trumps reinforcement. Whereas the reinforcement response is known to be mediated by upstream mechanosensing and downstream signaling, results presented here show the fluidization response to be altogether novel: it is a direct physical effect of mechanical force acting upon a structural lattice that is soft and fragile. Cytoskeletal softness and fragility, we argue, is consistent with early evolutionary adaptations of the eukaryotic cell to material properties of a soft inert microenvironment.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>19424501</pmid><doi>10.1371/journal.pone.0005486</doi><tpages>e5486</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2009-05, Vol.4 (5), p.e5486-e5486
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1289214986
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; Recercat; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Adaptation
Adaptations
Biomechanical Phenomena
Biophysics
Biophysics/Experimental Biophysical Methods
Bladder
Blood vessels
Cell Biology
Cell Biology/Cytoskeleton
Cells, Cultured
Cellular control mechanisms
Citosquelet
Colorectal cancer
Cytoskeletal proteins
Cytoskeleton
Cytoskeleton - physiology
Fluidization
Fluidizing
Fragility
Homeostasis
Humans
Lungs
Mechanics
Mechanotransduction, Cellular
Metabolism
Metastasis
Muscle contraction
Myocytes, Smooth Muscle - cytology
Nanotechnology
Physiology
Physiology/Respiratory Physiology
Polymerization
Proteïnes citosquelètiques
Public health
Regulació cel·lular
Reinforcement
Rheology
Science
Smooth muscle
Softness
Stress, Mechanical
Traction
Urinary bladder
title Reinforcement versus fluidization in cytoskeletal mechanoresponsiveness
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T20%3A42%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reinforcement%20versus%20fluidization%20in%20cytoskeletal%20mechanoresponsiveness&rft.jtitle=PloS%20one&rft.au=Krishnan,%20Ramaswamy&rft.date=2009-05-08&rft.volume=4&rft.issue=5&rft.spage=e5486&rft.epage=e5486&rft.pages=e5486-e5486&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0005486&rft_dat=%3Cgale_plos_%3EA473179625%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1289214986&rft_id=info:pmid/19424501&rft_galeid=A473179625&rft_doaj_id=oai_doaj_org_article_23799046e6ae4143a519145515d80ed6&rfr_iscdi=true