Melanopsin bistability: a fly's eye technology in the human retina

In addition to rods and cones, the human retina contains light-sensitive ganglion cells that express melanopsin, a photopigment with signal transduction mechanisms similar to that of invertebrate rhabdomeric photopigments (IRP). Like fly rhodopsins, melanopsin acts as a dual-state photosensitive fli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2009-06, Vol.4 (6), p.e5991-e5991
Hauptverfasser: Mure, Ludovic S, Cornut, Pierre-Loic, Rieux, Camille, Drouyer, Elise, Denis, Philippe, Gronfier, Claude, Cooper, Howard M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e5991
container_issue 6
container_start_page e5991
container_title PloS one
container_volume 4
creator Mure, Ludovic S
Cornut, Pierre-Loic
Rieux, Camille
Drouyer, Elise
Denis, Philippe
Gronfier, Claude
Cooper, Howard M
description In addition to rods and cones, the human retina contains light-sensitive ganglion cells that express melanopsin, a photopigment with signal transduction mechanisms similar to that of invertebrate rhabdomeric photopigments (IRP). Like fly rhodopsins, melanopsin acts as a dual-state photosensitive flip-flop in which light drives both phototransduction responses and chromophore photoregeneration that bestows independence from the retinoid cycle required by rods and cones to regenerate photoresponsiveness following bleaching by light. To explore the hypothesis that melanopsin in humans expresses the properties of a bistable photopigment in vivo we used the pupillary light reflex (PLR) as a tool but with methods designed to study invertebrate photoreceptors. We show that the pupil only attains a fully stabilized state of constriction after several minutes of light exposure, a feature that is consistent with typical IRP photoequilibrium spectra. We further demonstrate that previous exposure to long wavelength light increases, while short wavelength light decreases the amplitude of pupil constriction, a fundamental property of IRP difference spectra. Modelling these responses to invertebrate photopigment templates yields two putative spectra for the underlying R and M photopigment states with peaks at 481 nm and 587 nm respectively. Furthermore, this bistable mechanism may confer a novel form of "photic memory" since information of prior light conditions is retained and shapes subsequent responses to light. These results suggest that the human retina exploits fly-like photoreceptive mechanisms that are potentially important for the modulation of non-visual responses to light and highlights the ubiquitous nature of photoswitchable photosensors across living organisms.
doi_str_mv 10.1371/journal.pone.0005991
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1289205873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A473032376</galeid><doaj_id>oai_doaj_org_article_b026f0794d2d4002a5ab422606769fdf</doaj_id><sourcerecordid>A473032376</sourcerecordid><originalsourceid>FETCH-LOGICAL-c696t-47c39cbd33b43bea6cabe602ca41df9c5fc028da8125ff5f60800b072416ade53</originalsourceid><addsrcrecordid>eNqNkl2LEzEUhgdR3HX1H4gOCCtetOZ7Jl4I3UXdQmXBr9uQySSdlDSpk8xi__2mdnTbxQvJRcLJc97knPMWxXMIphBX8O0qDL2XbroJXk8BAJRz-KA4hRyjCUMAPzw4nxRPYlxlBteMPS5OIKcUQsxOi4vP2kkfNtH6srExycY6m7bvSlkat30dS73VZdKq88GF5bbMWOp02Q1r6cteJ-vl0-KRkS7qZ-N-Vnz_-OHb5dVkcf1pfjlbTBTjLE1IpTBXTYtxQ3CjJVOy0QwgJQlsDVfUKIDqVtYQUWOoYaAGoAEVIpDJVlN8Vrzc625ciGIsPwqIao4ArSucifmeaINciU1v17LfiiCt-B0I_VLIPlnltGgAYgZUnLSoJQAgSWVDEGKAVYyb1mSt9-NrQ7PWrdI-9dIdiR7feNuJZbgRiHFa1TALvNkLdPfSrmYLsYsBkjEIyM2OPR8f68PPQcck1jYq7fJodBiiYBWBHFGQwVf3wH_3YbqnljKXar0J-Ycqr1avrcp-MTbHZ6TCACNcsbu_jgmZSfpXWsohRjH_-uX_2esfx-z5Adtp6VIXgxuSDT4eg2QPqj7E2Gvzt2MQiJ3d_9QpdnYXo91z2ovDId0ljf7Gt9wR-WA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1289205873</pqid></control><display><type>article</type><title>Melanopsin bistability: a fly's eye technology in the human retina</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Mure, Ludovic S ; Cornut, Pierre-Loic ; Rieux, Camille ; Drouyer, Elise ; Denis, Philippe ; Gronfier, Claude ; Cooper, Howard M</creator><contributor>Egles, Christophe</contributor><creatorcontrib>Mure, Ludovic S ; Cornut, Pierre-Loic ; Rieux, Camille ; Drouyer, Elise ; Denis, Philippe ; Gronfier, Claude ; Cooper, Howard M ; Egles, Christophe</creatorcontrib><description>In addition to rods and cones, the human retina contains light-sensitive ganglion cells that express melanopsin, a photopigment with signal transduction mechanisms similar to that of invertebrate rhabdomeric photopigments (IRP). Like fly rhodopsins, melanopsin acts as a dual-state photosensitive flip-flop in which light drives both phototransduction responses and chromophore photoregeneration that bestows independence from the retinoid cycle required by rods and cones to regenerate photoresponsiveness following bleaching by light. To explore the hypothesis that melanopsin in humans expresses the properties of a bistable photopigment in vivo we used the pupillary light reflex (PLR) as a tool but with methods designed to study invertebrate photoreceptors. We show that the pupil only attains a fully stabilized state of constriction after several minutes of light exposure, a feature that is consistent with typical IRP photoequilibrium spectra. We further demonstrate that previous exposure to long wavelength light increases, while short wavelength light decreases the amplitude of pupil constriction, a fundamental property of IRP difference spectra. Modelling these responses to invertebrate photopigment templates yields two putative spectra for the underlying R and M photopigment states with peaks at 481 nm and 587 nm respectively. Furthermore, this bistable mechanism may confer a novel form of "photic memory" since information of prior light conditions is retained and shapes subsequent responses to light. These results suggest that the human retina exploits fly-like photoreceptive mechanisms that are potentially important for the modulation of non-visual responses to light and highlights the ubiquitous nature of photoswitchable photosensors across living organisms.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0005991</identifier><identifier>PMID: 19551136</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adult ; Bistability ; Bleaching ; Brain research ; Cones ; Cornea - drug effects ; Experiments ; Exposure ; Eye ; Female ; Glaucoma ; Humans ; Hypotheses ; Kinetics ; Life Sciences ; Light ; Light Signal Transduction ; Male ; Melanopsin ; Melatonin ; Neuroscience/Sensory Systems ; Ophthalmology ; Photopigments ; Photoreceptors ; Photosensitivity ; Phototransduction ; Physiology/Sensory Systems ; Pigmentation ; Pupil - physiology ; Retina ; Retina - metabolism ; Retinal ganglion cells ; Rod Opsins - metabolism ; Rod Opsins - physiology ; Rods ; Sensitivity and Specificity ; Signal transduction ; Spectra ; Spectrophotometry ; Stem cells ; Tropicamide - pharmacology ; Wavelength</subject><ispartof>PloS one, 2009-06, Vol.4 (6), p.e5991-e5991</ispartof><rights>COPYRIGHT 2009 Public Library of Science</rights><rights>2009 Mure et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Mure et al. 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c696t-47c39cbd33b43bea6cabe602ca41df9c5fc028da8125ff5f60800b072416ade53</citedby><orcidid>0000-0002-6549-799X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2695781/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2695781/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53769,53771,79346,79347</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19551136$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04781104$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Egles, Christophe</contributor><creatorcontrib>Mure, Ludovic S</creatorcontrib><creatorcontrib>Cornut, Pierre-Loic</creatorcontrib><creatorcontrib>Rieux, Camille</creatorcontrib><creatorcontrib>Drouyer, Elise</creatorcontrib><creatorcontrib>Denis, Philippe</creatorcontrib><creatorcontrib>Gronfier, Claude</creatorcontrib><creatorcontrib>Cooper, Howard M</creatorcontrib><title>Melanopsin bistability: a fly's eye technology in the human retina</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>In addition to rods and cones, the human retina contains light-sensitive ganglion cells that express melanopsin, a photopigment with signal transduction mechanisms similar to that of invertebrate rhabdomeric photopigments (IRP). Like fly rhodopsins, melanopsin acts as a dual-state photosensitive flip-flop in which light drives both phototransduction responses and chromophore photoregeneration that bestows independence from the retinoid cycle required by rods and cones to regenerate photoresponsiveness following bleaching by light. To explore the hypothesis that melanopsin in humans expresses the properties of a bistable photopigment in vivo we used the pupillary light reflex (PLR) as a tool but with methods designed to study invertebrate photoreceptors. We show that the pupil only attains a fully stabilized state of constriction after several minutes of light exposure, a feature that is consistent with typical IRP photoequilibrium spectra. We further demonstrate that previous exposure to long wavelength light increases, while short wavelength light decreases the amplitude of pupil constriction, a fundamental property of IRP difference spectra. Modelling these responses to invertebrate photopigment templates yields two putative spectra for the underlying R and M photopigment states with peaks at 481 nm and 587 nm respectively. Furthermore, this bistable mechanism may confer a novel form of "photic memory" since information of prior light conditions is retained and shapes subsequent responses to light. These results suggest that the human retina exploits fly-like photoreceptive mechanisms that are potentially important for the modulation of non-visual responses to light and highlights the ubiquitous nature of photoswitchable photosensors across living organisms.</description><subject>Adult</subject><subject>Bistability</subject><subject>Bleaching</subject><subject>Brain research</subject><subject>Cones</subject><subject>Cornea - drug effects</subject><subject>Experiments</subject><subject>Exposure</subject><subject>Eye</subject><subject>Female</subject><subject>Glaucoma</subject><subject>Humans</subject><subject>Hypotheses</subject><subject>Kinetics</subject><subject>Life Sciences</subject><subject>Light</subject><subject>Light Signal Transduction</subject><subject>Male</subject><subject>Melanopsin</subject><subject>Melatonin</subject><subject>Neuroscience/Sensory Systems</subject><subject>Ophthalmology</subject><subject>Photopigments</subject><subject>Photoreceptors</subject><subject>Photosensitivity</subject><subject>Phototransduction</subject><subject>Physiology/Sensory Systems</subject><subject>Pigmentation</subject><subject>Pupil - physiology</subject><subject>Retina</subject><subject>Retina - metabolism</subject><subject>Retinal ganglion cells</subject><subject>Rod Opsins - metabolism</subject><subject>Rod Opsins - physiology</subject><subject>Rods</subject><subject>Sensitivity and Specificity</subject><subject>Signal transduction</subject><subject>Spectra</subject><subject>Spectrophotometry</subject><subject>Stem cells</subject><subject>Tropicamide - pharmacology</subject><subject>Wavelength</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2LEzEUhgdR3HX1H4gOCCtetOZ7Jl4I3UXdQmXBr9uQySSdlDSpk8xi__2mdnTbxQvJRcLJc97knPMWxXMIphBX8O0qDL2XbroJXk8BAJRz-KA4hRyjCUMAPzw4nxRPYlxlBteMPS5OIKcUQsxOi4vP2kkfNtH6srExycY6m7bvSlkat30dS73VZdKq88GF5bbMWOp02Q1r6cteJ-vl0-KRkS7qZ-N-Vnz_-OHb5dVkcf1pfjlbTBTjLE1IpTBXTYtxQ3CjJVOy0QwgJQlsDVfUKIDqVtYQUWOoYaAGoAEVIpDJVlN8Vrzc625ciGIsPwqIao4ArSucifmeaINciU1v17LfiiCt-B0I_VLIPlnltGgAYgZUnLSoJQAgSWVDEGKAVYyb1mSt9-NrQ7PWrdI-9dIdiR7feNuJZbgRiHFa1TALvNkLdPfSrmYLsYsBkjEIyM2OPR8f68PPQcck1jYq7fJodBiiYBWBHFGQwVf3wH_3YbqnljKXar0J-Ycqr1avrcp-MTbHZ6TCACNcsbu_jgmZSfpXWsohRjH_-uX_2esfx-z5Adtp6VIXgxuSDT4eg2QPqj7E2Gvzt2MQiJ3d_9QpdnYXo91z2ovDId0ljf7Gt9wR-WA</recordid><startdate>20090624</startdate><enddate>20090624</enddate><creator>Mure, Ludovic S</creator><creator>Cornut, Pierre-Loic</creator><creator>Rieux, Camille</creator><creator>Drouyer, Elise</creator><creator>Denis, Philippe</creator><creator>Gronfier, Claude</creator><creator>Cooper, Howard M</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6549-799X</orcidid></search><sort><creationdate>20090624</creationdate><title>Melanopsin bistability: a fly's eye technology in the human retina</title><author>Mure, Ludovic S ; Cornut, Pierre-Loic ; Rieux, Camille ; Drouyer, Elise ; Denis, Philippe ; Gronfier, Claude ; Cooper, Howard M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c696t-47c39cbd33b43bea6cabe602ca41df9c5fc028da8125ff5f60800b072416ade53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Adult</topic><topic>Bistability</topic><topic>Bleaching</topic><topic>Brain research</topic><topic>Cones</topic><topic>Cornea - drug effects</topic><topic>Experiments</topic><topic>Exposure</topic><topic>Eye</topic><topic>Female</topic><topic>Glaucoma</topic><topic>Humans</topic><topic>Hypotheses</topic><topic>Kinetics</topic><topic>Life Sciences</topic><topic>Light</topic><topic>Light Signal Transduction</topic><topic>Male</topic><topic>Melanopsin</topic><topic>Melatonin</topic><topic>Neuroscience/Sensory Systems</topic><topic>Ophthalmology</topic><topic>Photopigments</topic><topic>Photoreceptors</topic><topic>Photosensitivity</topic><topic>Phototransduction</topic><topic>Physiology/Sensory Systems</topic><topic>Pigmentation</topic><topic>Pupil - physiology</topic><topic>Retina</topic><topic>Retina - metabolism</topic><topic>Retinal ganglion cells</topic><topic>Rod Opsins - metabolism</topic><topic>Rod Opsins - physiology</topic><topic>Rods</topic><topic>Sensitivity and Specificity</topic><topic>Signal transduction</topic><topic>Spectra</topic><topic>Spectrophotometry</topic><topic>Stem cells</topic><topic>Tropicamide - pharmacology</topic><topic>Wavelength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mure, Ludovic S</creatorcontrib><creatorcontrib>Cornut, Pierre-Loic</creatorcontrib><creatorcontrib>Rieux, Camille</creatorcontrib><creatorcontrib>Drouyer, Elise</creatorcontrib><creatorcontrib>Denis, Philippe</creatorcontrib><creatorcontrib>Gronfier, Claude</creatorcontrib><creatorcontrib>Cooper, Howard M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mure, Ludovic S</au><au>Cornut, Pierre-Loic</au><au>Rieux, Camille</au><au>Drouyer, Elise</au><au>Denis, Philippe</au><au>Gronfier, Claude</au><au>Cooper, Howard M</au><au>Egles, Christophe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Melanopsin bistability: a fly's eye technology in the human retina</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2009-06-24</date><risdate>2009</risdate><volume>4</volume><issue>6</issue><spage>e5991</spage><epage>e5991</epage><pages>e5991-e5991</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>In addition to rods and cones, the human retina contains light-sensitive ganglion cells that express melanopsin, a photopigment with signal transduction mechanisms similar to that of invertebrate rhabdomeric photopigments (IRP). Like fly rhodopsins, melanopsin acts as a dual-state photosensitive flip-flop in which light drives both phototransduction responses and chromophore photoregeneration that bestows independence from the retinoid cycle required by rods and cones to regenerate photoresponsiveness following bleaching by light. To explore the hypothesis that melanopsin in humans expresses the properties of a bistable photopigment in vivo we used the pupillary light reflex (PLR) as a tool but with methods designed to study invertebrate photoreceptors. We show that the pupil only attains a fully stabilized state of constriction after several minutes of light exposure, a feature that is consistent with typical IRP photoequilibrium spectra. We further demonstrate that previous exposure to long wavelength light increases, while short wavelength light decreases the amplitude of pupil constriction, a fundamental property of IRP difference spectra. Modelling these responses to invertebrate photopigment templates yields two putative spectra for the underlying R and M photopigment states with peaks at 481 nm and 587 nm respectively. Furthermore, this bistable mechanism may confer a novel form of "photic memory" since information of prior light conditions is retained and shapes subsequent responses to light. These results suggest that the human retina exploits fly-like photoreceptive mechanisms that are potentially important for the modulation of non-visual responses to light and highlights the ubiquitous nature of photoswitchable photosensors across living organisms.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>19551136</pmid><doi>10.1371/journal.pone.0005991</doi><tpages>e5991</tpages><orcidid>https://orcid.org/0000-0002-6549-799X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2009-06, Vol.4 (6), p.e5991-e5991
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1289205873
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Adult
Bistability
Bleaching
Brain research
Cones
Cornea - drug effects
Experiments
Exposure
Eye
Female
Glaucoma
Humans
Hypotheses
Kinetics
Life Sciences
Light
Light Signal Transduction
Male
Melanopsin
Melatonin
Neuroscience/Sensory Systems
Ophthalmology
Photopigments
Photoreceptors
Photosensitivity
Phototransduction
Physiology/Sensory Systems
Pigmentation
Pupil - physiology
Retina
Retina - metabolism
Retinal ganglion cells
Rod Opsins - metabolism
Rod Opsins - physiology
Rods
Sensitivity and Specificity
Signal transduction
Spectra
Spectrophotometry
Stem cells
Tropicamide - pharmacology
Wavelength
title Melanopsin bistability: a fly's eye technology in the human retina
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T05%3A30%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Melanopsin%20bistability:%20a%20fly's%20eye%20technology%20in%20the%20human%20retina&rft.jtitle=PloS%20one&rft.au=Mure,%20Ludovic%20S&rft.date=2009-06-24&rft.volume=4&rft.issue=6&rft.spage=e5991&rft.epage=e5991&rft.pages=e5991-e5991&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0005991&rft_dat=%3Cgale_plos_%3EA473032376%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1289205873&rft_id=info:pmid/19551136&rft_galeid=A473032376&rft_doaj_id=oai_doaj_org_article_b026f0794d2d4002a5ab422606769fdf&rfr_iscdi=true