Melanopsin bistability: a fly's eye technology in the human retina
In addition to rods and cones, the human retina contains light-sensitive ganglion cells that express melanopsin, a photopigment with signal transduction mechanisms similar to that of invertebrate rhabdomeric photopigments (IRP). Like fly rhodopsins, melanopsin acts as a dual-state photosensitive fli...
Gespeichert in:
Veröffentlicht in: | PloS one 2009-06, Vol.4 (6), p.e5991-e5991 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e5991 |
---|---|
container_issue | 6 |
container_start_page | e5991 |
container_title | PloS one |
container_volume | 4 |
creator | Mure, Ludovic S Cornut, Pierre-Loic Rieux, Camille Drouyer, Elise Denis, Philippe Gronfier, Claude Cooper, Howard M |
description | In addition to rods and cones, the human retina contains light-sensitive ganglion cells that express melanopsin, a photopigment with signal transduction mechanisms similar to that of invertebrate rhabdomeric photopigments (IRP). Like fly rhodopsins, melanopsin acts as a dual-state photosensitive flip-flop in which light drives both phototransduction responses and chromophore photoregeneration that bestows independence from the retinoid cycle required by rods and cones to regenerate photoresponsiveness following bleaching by light. To explore the hypothesis that melanopsin in humans expresses the properties of a bistable photopigment in vivo we used the pupillary light reflex (PLR) as a tool but with methods designed to study invertebrate photoreceptors. We show that the pupil only attains a fully stabilized state of constriction after several minutes of light exposure, a feature that is consistent with typical IRP photoequilibrium spectra. We further demonstrate that previous exposure to long wavelength light increases, while short wavelength light decreases the amplitude of pupil constriction, a fundamental property of IRP difference spectra. Modelling these responses to invertebrate photopigment templates yields two putative spectra for the underlying R and M photopigment states with peaks at 481 nm and 587 nm respectively. Furthermore, this bistable mechanism may confer a novel form of "photic memory" since information of prior light conditions is retained and shapes subsequent responses to light. These results suggest that the human retina exploits fly-like photoreceptive mechanisms that are potentially important for the modulation of non-visual responses to light and highlights the ubiquitous nature of photoswitchable photosensors across living organisms. |
doi_str_mv | 10.1371/journal.pone.0005991 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1289205873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A473032376</galeid><doaj_id>oai_doaj_org_article_b026f0794d2d4002a5ab422606769fdf</doaj_id><sourcerecordid>A473032376</sourcerecordid><originalsourceid>FETCH-LOGICAL-c696t-47c39cbd33b43bea6cabe602ca41df9c5fc028da8125ff5f60800b072416ade53</originalsourceid><addsrcrecordid>eNqNkl2LEzEUhgdR3HX1H4gOCCtetOZ7Jl4I3UXdQmXBr9uQySSdlDSpk8xi__2mdnTbxQvJRcLJc97knPMWxXMIphBX8O0qDL2XbroJXk8BAJRz-KA4hRyjCUMAPzw4nxRPYlxlBteMPS5OIKcUQsxOi4vP2kkfNtH6srExycY6m7bvSlkat30dS73VZdKq88GF5bbMWOp02Q1r6cteJ-vl0-KRkS7qZ-N-Vnz_-OHb5dVkcf1pfjlbTBTjLE1IpTBXTYtxQ3CjJVOy0QwgJQlsDVfUKIDqVtYQUWOoYaAGoAEVIpDJVlN8Vrzc625ciGIsPwqIao4ArSucifmeaINciU1v17LfiiCt-B0I_VLIPlnltGgAYgZUnLSoJQAgSWVDEGKAVYyb1mSt9-NrQ7PWrdI-9dIdiR7feNuJZbgRiHFa1TALvNkLdPfSrmYLsYsBkjEIyM2OPR8f68PPQcck1jYq7fJodBiiYBWBHFGQwVf3wH_3YbqnljKXar0J-Ycqr1avrcp-MTbHZ6TCACNcsbu_jgmZSfpXWsohRjH_-uX_2esfx-z5Adtp6VIXgxuSDT4eg2QPqj7E2Gvzt2MQiJ3d_9QpdnYXo91z2ovDId0ljf7Gt9wR-WA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1289205873</pqid></control><display><type>article</type><title>Melanopsin bistability: a fly's eye technology in the human retina</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Mure, Ludovic S ; Cornut, Pierre-Loic ; Rieux, Camille ; Drouyer, Elise ; Denis, Philippe ; Gronfier, Claude ; Cooper, Howard M</creator><contributor>Egles, Christophe</contributor><creatorcontrib>Mure, Ludovic S ; Cornut, Pierre-Loic ; Rieux, Camille ; Drouyer, Elise ; Denis, Philippe ; Gronfier, Claude ; Cooper, Howard M ; Egles, Christophe</creatorcontrib><description>In addition to rods and cones, the human retina contains light-sensitive ganglion cells that express melanopsin, a photopigment with signal transduction mechanisms similar to that of invertebrate rhabdomeric photopigments (IRP). Like fly rhodopsins, melanopsin acts as a dual-state photosensitive flip-flop in which light drives both phototransduction responses and chromophore photoregeneration that bestows independence from the retinoid cycle required by rods and cones to regenerate photoresponsiveness following bleaching by light. To explore the hypothesis that melanopsin in humans expresses the properties of a bistable photopigment in vivo we used the pupillary light reflex (PLR) as a tool but with methods designed to study invertebrate photoreceptors. We show that the pupil only attains a fully stabilized state of constriction after several minutes of light exposure, a feature that is consistent with typical IRP photoequilibrium spectra. We further demonstrate that previous exposure to long wavelength light increases, while short wavelength light decreases the amplitude of pupil constriction, a fundamental property of IRP difference spectra. Modelling these responses to invertebrate photopigment templates yields two putative spectra for the underlying R and M photopigment states with peaks at 481 nm and 587 nm respectively. Furthermore, this bistable mechanism may confer a novel form of "photic memory" since information of prior light conditions is retained and shapes subsequent responses to light. These results suggest that the human retina exploits fly-like photoreceptive mechanisms that are potentially important for the modulation of non-visual responses to light and highlights the ubiquitous nature of photoswitchable photosensors across living organisms.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0005991</identifier><identifier>PMID: 19551136</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adult ; Bistability ; Bleaching ; Brain research ; Cones ; Cornea - drug effects ; Experiments ; Exposure ; Eye ; Female ; Glaucoma ; Humans ; Hypotheses ; Kinetics ; Life Sciences ; Light ; Light Signal Transduction ; Male ; Melanopsin ; Melatonin ; Neuroscience/Sensory Systems ; Ophthalmology ; Photopigments ; Photoreceptors ; Photosensitivity ; Phototransduction ; Physiology/Sensory Systems ; Pigmentation ; Pupil - physiology ; Retina ; Retina - metabolism ; Retinal ganglion cells ; Rod Opsins - metabolism ; Rod Opsins - physiology ; Rods ; Sensitivity and Specificity ; Signal transduction ; Spectra ; Spectrophotometry ; Stem cells ; Tropicamide - pharmacology ; Wavelength</subject><ispartof>PloS one, 2009-06, Vol.4 (6), p.e5991-e5991</ispartof><rights>COPYRIGHT 2009 Public Library of Science</rights><rights>2009 Mure et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Mure et al. 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c696t-47c39cbd33b43bea6cabe602ca41df9c5fc028da8125ff5f60800b072416ade53</citedby><orcidid>0000-0002-6549-799X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2695781/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2695781/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53769,53771,79346,79347</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19551136$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04781104$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Egles, Christophe</contributor><creatorcontrib>Mure, Ludovic S</creatorcontrib><creatorcontrib>Cornut, Pierre-Loic</creatorcontrib><creatorcontrib>Rieux, Camille</creatorcontrib><creatorcontrib>Drouyer, Elise</creatorcontrib><creatorcontrib>Denis, Philippe</creatorcontrib><creatorcontrib>Gronfier, Claude</creatorcontrib><creatorcontrib>Cooper, Howard M</creatorcontrib><title>Melanopsin bistability: a fly's eye technology in the human retina</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>In addition to rods and cones, the human retina contains light-sensitive ganglion cells that express melanopsin, a photopigment with signal transduction mechanisms similar to that of invertebrate rhabdomeric photopigments (IRP). Like fly rhodopsins, melanopsin acts as a dual-state photosensitive flip-flop in which light drives both phototransduction responses and chromophore photoregeneration that bestows independence from the retinoid cycle required by rods and cones to regenerate photoresponsiveness following bleaching by light. To explore the hypothesis that melanopsin in humans expresses the properties of a bistable photopigment in vivo we used the pupillary light reflex (PLR) as a tool but with methods designed to study invertebrate photoreceptors. We show that the pupil only attains a fully stabilized state of constriction after several minutes of light exposure, a feature that is consistent with typical IRP photoequilibrium spectra. We further demonstrate that previous exposure to long wavelength light increases, while short wavelength light decreases the amplitude of pupil constriction, a fundamental property of IRP difference spectra. Modelling these responses to invertebrate photopigment templates yields two putative spectra for the underlying R and M photopigment states with peaks at 481 nm and 587 nm respectively. Furthermore, this bistable mechanism may confer a novel form of "photic memory" since information of prior light conditions is retained and shapes subsequent responses to light. These results suggest that the human retina exploits fly-like photoreceptive mechanisms that are potentially important for the modulation of non-visual responses to light and highlights the ubiquitous nature of photoswitchable photosensors across living organisms.</description><subject>Adult</subject><subject>Bistability</subject><subject>Bleaching</subject><subject>Brain research</subject><subject>Cones</subject><subject>Cornea - drug effects</subject><subject>Experiments</subject><subject>Exposure</subject><subject>Eye</subject><subject>Female</subject><subject>Glaucoma</subject><subject>Humans</subject><subject>Hypotheses</subject><subject>Kinetics</subject><subject>Life Sciences</subject><subject>Light</subject><subject>Light Signal Transduction</subject><subject>Male</subject><subject>Melanopsin</subject><subject>Melatonin</subject><subject>Neuroscience/Sensory Systems</subject><subject>Ophthalmology</subject><subject>Photopigments</subject><subject>Photoreceptors</subject><subject>Photosensitivity</subject><subject>Phototransduction</subject><subject>Physiology/Sensory Systems</subject><subject>Pigmentation</subject><subject>Pupil - physiology</subject><subject>Retina</subject><subject>Retina - metabolism</subject><subject>Retinal ganglion cells</subject><subject>Rod Opsins - metabolism</subject><subject>Rod Opsins - physiology</subject><subject>Rods</subject><subject>Sensitivity and Specificity</subject><subject>Signal transduction</subject><subject>Spectra</subject><subject>Spectrophotometry</subject><subject>Stem cells</subject><subject>Tropicamide - pharmacology</subject><subject>Wavelength</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2LEzEUhgdR3HX1H4gOCCtetOZ7Jl4I3UXdQmXBr9uQySSdlDSpk8xi__2mdnTbxQvJRcLJc97knPMWxXMIphBX8O0qDL2XbroJXk8BAJRz-KA4hRyjCUMAPzw4nxRPYlxlBteMPS5OIKcUQsxOi4vP2kkfNtH6srExycY6m7bvSlkat30dS73VZdKq88GF5bbMWOp02Q1r6cteJ-vl0-KRkS7qZ-N-Vnz_-OHb5dVkcf1pfjlbTBTjLE1IpTBXTYtxQ3CjJVOy0QwgJQlsDVfUKIDqVtYQUWOoYaAGoAEVIpDJVlN8Vrzc625ciGIsPwqIao4ArSucifmeaINciU1v17LfiiCt-B0I_VLIPlnltGgAYgZUnLSoJQAgSWVDEGKAVYyb1mSt9-NrQ7PWrdI-9dIdiR7feNuJZbgRiHFa1TALvNkLdPfSrmYLsYsBkjEIyM2OPR8f68PPQcck1jYq7fJodBiiYBWBHFGQwVf3wH_3YbqnljKXar0J-Ycqr1avrcp-MTbHZ6TCACNcsbu_jgmZSfpXWsohRjH_-uX_2esfx-z5Adtp6VIXgxuSDT4eg2QPqj7E2Gvzt2MQiJ3d_9QpdnYXo91z2ovDId0ljf7Gt9wR-WA</recordid><startdate>20090624</startdate><enddate>20090624</enddate><creator>Mure, Ludovic S</creator><creator>Cornut, Pierre-Loic</creator><creator>Rieux, Camille</creator><creator>Drouyer, Elise</creator><creator>Denis, Philippe</creator><creator>Gronfier, Claude</creator><creator>Cooper, Howard M</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6549-799X</orcidid></search><sort><creationdate>20090624</creationdate><title>Melanopsin bistability: a fly's eye technology in the human retina</title><author>Mure, Ludovic S ; Cornut, Pierre-Loic ; Rieux, Camille ; Drouyer, Elise ; Denis, Philippe ; Gronfier, Claude ; Cooper, Howard M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c696t-47c39cbd33b43bea6cabe602ca41df9c5fc028da8125ff5f60800b072416ade53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Adult</topic><topic>Bistability</topic><topic>Bleaching</topic><topic>Brain research</topic><topic>Cones</topic><topic>Cornea - drug effects</topic><topic>Experiments</topic><topic>Exposure</topic><topic>Eye</topic><topic>Female</topic><topic>Glaucoma</topic><topic>Humans</topic><topic>Hypotheses</topic><topic>Kinetics</topic><topic>Life Sciences</topic><topic>Light</topic><topic>Light Signal Transduction</topic><topic>Male</topic><topic>Melanopsin</topic><topic>Melatonin</topic><topic>Neuroscience/Sensory Systems</topic><topic>Ophthalmology</topic><topic>Photopigments</topic><topic>Photoreceptors</topic><topic>Photosensitivity</topic><topic>Phototransduction</topic><topic>Physiology/Sensory Systems</topic><topic>Pigmentation</topic><topic>Pupil - physiology</topic><topic>Retina</topic><topic>Retina - metabolism</topic><topic>Retinal ganglion cells</topic><topic>Rod Opsins - metabolism</topic><topic>Rod Opsins - physiology</topic><topic>Rods</topic><topic>Sensitivity and Specificity</topic><topic>Signal transduction</topic><topic>Spectra</topic><topic>Spectrophotometry</topic><topic>Stem cells</topic><topic>Tropicamide - pharmacology</topic><topic>Wavelength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mure, Ludovic S</creatorcontrib><creatorcontrib>Cornut, Pierre-Loic</creatorcontrib><creatorcontrib>Rieux, Camille</creatorcontrib><creatorcontrib>Drouyer, Elise</creatorcontrib><creatorcontrib>Denis, Philippe</creatorcontrib><creatorcontrib>Gronfier, Claude</creatorcontrib><creatorcontrib>Cooper, Howard M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mure, Ludovic S</au><au>Cornut, Pierre-Loic</au><au>Rieux, Camille</au><au>Drouyer, Elise</au><au>Denis, Philippe</au><au>Gronfier, Claude</au><au>Cooper, Howard M</au><au>Egles, Christophe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Melanopsin bistability: a fly's eye technology in the human retina</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2009-06-24</date><risdate>2009</risdate><volume>4</volume><issue>6</issue><spage>e5991</spage><epage>e5991</epage><pages>e5991-e5991</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>In addition to rods and cones, the human retina contains light-sensitive ganglion cells that express melanopsin, a photopigment with signal transduction mechanisms similar to that of invertebrate rhabdomeric photopigments (IRP). Like fly rhodopsins, melanopsin acts as a dual-state photosensitive flip-flop in which light drives both phototransduction responses and chromophore photoregeneration that bestows independence from the retinoid cycle required by rods and cones to regenerate photoresponsiveness following bleaching by light. To explore the hypothesis that melanopsin in humans expresses the properties of a bistable photopigment in vivo we used the pupillary light reflex (PLR) as a tool but with methods designed to study invertebrate photoreceptors. We show that the pupil only attains a fully stabilized state of constriction after several minutes of light exposure, a feature that is consistent with typical IRP photoequilibrium spectra. We further demonstrate that previous exposure to long wavelength light increases, while short wavelength light decreases the amplitude of pupil constriction, a fundamental property of IRP difference spectra. Modelling these responses to invertebrate photopigment templates yields two putative spectra for the underlying R and M photopigment states with peaks at 481 nm and 587 nm respectively. Furthermore, this bistable mechanism may confer a novel form of "photic memory" since information of prior light conditions is retained and shapes subsequent responses to light. These results suggest that the human retina exploits fly-like photoreceptive mechanisms that are potentially important for the modulation of non-visual responses to light and highlights the ubiquitous nature of photoswitchable photosensors across living organisms.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>19551136</pmid><doi>10.1371/journal.pone.0005991</doi><tpages>e5991</tpages><orcidid>https://orcid.org/0000-0002-6549-799X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2009-06, Vol.4 (6), p.e5991-e5991 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1289205873 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Adult Bistability Bleaching Brain research Cones Cornea - drug effects Experiments Exposure Eye Female Glaucoma Humans Hypotheses Kinetics Life Sciences Light Light Signal Transduction Male Melanopsin Melatonin Neuroscience/Sensory Systems Ophthalmology Photopigments Photoreceptors Photosensitivity Phototransduction Physiology/Sensory Systems Pigmentation Pupil - physiology Retina Retina - metabolism Retinal ganglion cells Rod Opsins - metabolism Rod Opsins - physiology Rods Sensitivity and Specificity Signal transduction Spectra Spectrophotometry Stem cells Tropicamide - pharmacology Wavelength |
title | Melanopsin bistability: a fly's eye technology in the human retina |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T05%3A30%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Melanopsin%20bistability:%20a%20fly's%20eye%20technology%20in%20the%20human%20retina&rft.jtitle=PloS%20one&rft.au=Mure,%20Ludovic%20S&rft.date=2009-06-24&rft.volume=4&rft.issue=6&rft.spage=e5991&rft.epage=e5991&rft.pages=e5991-e5991&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0005991&rft_dat=%3Cgale_plos_%3EA473032376%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1289205873&rft_id=info:pmid/19551136&rft_galeid=A473032376&rft_doaj_id=oai_doaj_org_article_b026f0794d2d4002a5ab422606769fdf&rfr_iscdi=true |