Dopamine transporters in striatum correlate with deactivation in the default mode network during visuospatial attention
Dopamine and dopamine transporters (DAT, which regulate extracellular dopamine in the brain) are implicated in the modulation of attention but their specific roles are not well understood. Here we hypothesized that dopamine modulates attention by facilitation of brain deactivation in the default mod...
Gespeichert in:
Veröffentlicht in: | PloS one 2009-06, Vol.4 (6), p.e6102-e6102 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e6102 |
---|---|
container_issue | 6 |
container_start_page | e6102 |
container_title | PloS one |
container_volume | 4 |
creator | Tomasi, Dardo Volkow, Nora D Wang, Ruiliang Telang, Frank Wang, Gene-Jack Chang, Linda Ernst, Thomas Fowler, Joanna S |
description | Dopamine and dopamine transporters (DAT, which regulate extracellular dopamine in the brain) are implicated in the modulation of attention but their specific roles are not well understood. Here we hypothesized that dopamine modulates attention by facilitation of brain deactivation in the default mode network (DMN). Thus, higher striatal DAT levels, which would result in an enhanced clearance of dopamine and hence weaker dopamine signals, would be associated to lower deactivation in the DMN during an attention task.
For this purpose we assessed the relationship between DAT in striatum (measured with positron emission tomography and [(11)C]cocaine used as DAT radiotracer) and brain activation and deactivation during a parametric visual attention task (measured with blood oxygenation level dependent functional magnetic resonance imaging) in healthy controls. We show that DAT availability in caudate and putamen had a negative correlation with deactivation in ventral parietal regions of the DMN (precuneus, BA 7) and a positive correlation with deactivation in a small region in the ventral anterior cingulate gyrus (BA 24/32). With increasing attentional load, DAT in caudate showed a negative correlation with load-related deactivation increases in precuneus.
These findings provide evidence that dopamine transporters modulate neural activity in the DMN and anterior cingulate gyrus during visuospatial attention. Our findings suggest that dopamine modulates attention in part by regulating neuronal activity in posterior parietal cortex including precuneus (region involved in alertness) and cingulate gyrus (region deactivated in proportion to emotional interference). These findings suggest that the beneficial effects of stimulant medications (increase dopamine by blocking DAT) in inattention reflect in part their ability to facilitate the deactivation of the DMN. |
doi_str_mv | 10.1371/journal.pone.0006102 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1289188707</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A472987159</galeid><doaj_id>oai_doaj_org_article_3e3fdd379e1c40319762dd2e64901b56</doaj_id><sourcerecordid>A472987159</sourcerecordid><originalsourceid>FETCH-LOGICAL-c689t-67c2e86534bfa3aad39375e4e8911e051dc02096c14e83fd5a36892b1d6140c33</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7rr6D0SLwoIXM-ajTZsbYVm_BhYW_LoNmeR0mrVNukk6o__e1Kk6I15IL1JOnvc9OSc5WfYYoyWmFX5540ZvZbccnIUlQohhRO5kp5hTsmAE0bsH_yfZgxBuECppzdj97ATzkhUc16fZ7rUbZG8s5NFLGwbnI_iQG5uH6I2MY58r5z10MkK-M7HNNUgVzVZG4-zExRZSrJFjF_PeacgtxJ3zX3M9emM3-daE0YUh8bLLZYxgJ-XD7F4juwCP5vUs-_z2zafL94ur63ery4urhWI1jwtWKQI1K2mxbiSVUlNOqxIKqDnGgEqsFSKIM4VTiDa6lDTpyBprhgukKD3Lnu59h84FMfcsCEySQV1XqErEak9oJ2_E4E0v_XfhpBE_A85vhPTRqA4EhZRC04oDVgWimFeMaE0g9RLhdcmS16s527juQatUq5fdkenxjjWt2LitIIzzspiO-2xv4EI0IigTQbXKWQsqCsxIRas6QedzFu9uRwhR9CYo6DppwY1BsKqgBJc4gc__Av_dgOWe2shUo7GNS0dT6dPQm5QbGpPiF0VFeF3hkifBiyNBYiJ8ixs5hiBWHz_8P3v95Zg9P2BbkF1sg-vG6b2EY7DYg8q7EDw0vzuMkZiG41edYhoOMQ9Hkj05vJ0_onka6A8_Lwxu</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1289188707</pqid></control><display><type>article</type><title>Dopamine transporters in striatum correlate with deactivation in the default mode network during visuospatial attention</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Tomasi, Dardo ; Volkow, Nora D ; Wang, Ruiliang ; Telang, Frank ; Wang, Gene-Jack ; Chang, Linda ; Ernst, Thomas ; Fowler, Joanna S</creator><contributor>Rustichini, Aldo</contributor><creatorcontrib>Tomasi, Dardo ; Volkow, Nora D ; Wang, Ruiliang ; Telang, Frank ; Wang, Gene-Jack ; Chang, Linda ; Ernst, Thomas ; Fowler, Joanna S ; Brookhaven National Laboratory (BNL), Upton, NY (United States) ; Rustichini, Aldo</creatorcontrib><description>Dopamine and dopamine transporters (DAT, which regulate extracellular dopamine in the brain) are implicated in the modulation of attention but their specific roles are not well understood. Here we hypothesized that dopamine modulates attention by facilitation of brain deactivation in the default mode network (DMN). Thus, higher striatal DAT levels, which would result in an enhanced clearance of dopamine and hence weaker dopamine signals, would be associated to lower deactivation in the DMN during an attention task.
For this purpose we assessed the relationship between DAT in striatum (measured with positron emission tomography and [(11)C]cocaine used as DAT radiotracer) and brain activation and deactivation during a parametric visual attention task (measured with blood oxygenation level dependent functional magnetic resonance imaging) in healthy controls. We show that DAT availability in caudate and putamen had a negative correlation with deactivation in ventral parietal regions of the DMN (precuneus, BA 7) and a positive correlation with deactivation in a small region in the ventral anterior cingulate gyrus (BA 24/32). With increasing attentional load, DAT in caudate showed a negative correlation with load-related deactivation increases in precuneus.
These findings provide evidence that dopamine transporters modulate neural activity in the DMN and anterior cingulate gyrus during visuospatial attention. Our findings suggest that dopamine modulates attention in part by regulating neuronal activity in posterior parietal cortex including precuneus (region involved in alertness) and cingulate gyrus (region deactivated in proportion to emotional interference). These findings suggest that the beneficial effects of stimulant medications (increase dopamine by blocking DAT) in inattention reflect in part their ability to facilitate the deactivation of the DMN.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0006102</identifier><identifier>PMID: 19564918</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adult ; Alcoholism ; Alertness ; Amphetamines ; Attention ; Attention deficit hyperactivity disorder ; Attention task ; BASIC BIOLOGICAL SCIENCES ; Brain ; Brain - diagnostic imaging ; Brain - metabolism ; Brain mapping ; Brain Mapping - methods ; Brain research ; Carbon Radioisotopes - pharmacology ; Cocaine ; Cocaine - pharmacology ; Corpus Striatum - metabolism ; Correlation ; Cortex (cingulate) ; Cortex (parietal) ; Deactivation ; Dopamine ; Dopamine Plasma Membrane Transport Proteins - metabolism ; Dopamine transporter ; Emission analysis ; Emission measurements ; Error correction & detection ; Family medical history ; Functional magnetic resonance imaging ; Humans ; Hyperactivity ; Hypotheses ; Image Processing, Computer-Assisted - methods ; Laboratories ; Magnetic fields ; Magnetic resonance ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Male ; Medical imaging ; Memory ; Models, Biological ; Neostriatum ; Neuroimaging ; Neurological Disorders/Neuroimaging ; Neurological Disorders/Neuropsychiatric Disorders ; Neurons ; Neuroscience/Cognitive Neuroscience ; NMR ; Nuclear magnetic resonance ; Oxygenation ; Parkinson's disease ; Parkinsons disease ; Phenols (Class of compounds) ; position emission tomography ; Positron emission ; Positron emission tomography ; Positron-Emission Tomography - methods ; Putamen ; Radioactive tracers ; statistical signal processing ; Studies ; thalamus ; Urine ; Vision, Ocular ; Visual cortex ; Visual perception ; Visual tasks</subject><ispartof>PloS one, 2009-06, Vol.4 (6), p.e6102-e6102</ispartof><rights>COPYRIGHT 2009 Public Library of Science</rights><rights>This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c689t-67c2e86534bfa3aad39375e4e8911e051dc02096c14e83fd5a36892b1d6140c33</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2699543/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2699543/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,862,883,2098,2917,23849,27907,27908,53774,53776,79351,79352</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19564918$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1627378$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><contributor>Rustichini, Aldo</contributor><creatorcontrib>Tomasi, Dardo</creatorcontrib><creatorcontrib>Volkow, Nora D</creatorcontrib><creatorcontrib>Wang, Ruiliang</creatorcontrib><creatorcontrib>Telang, Frank</creatorcontrib><creatorcontrib>Wang, Gene-Jack</creatorcontrib><creatorcontrib>Chang, Linda</creatorcontrib><creatorcontrib>Ernst, Thomas</creatorcontrib><creatorcontrib>Fowler, Joanna S</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><title>Dopamine transporters in striatum correlate with deactivation in the default mode network during visuospatial attention</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Dopamine and dopamine transporters (DAT, which regulate extracellular dopamine in the brain) are implicated in the modulation of attention but their specific roles are not well understood. Here we hypothesized that dopamine modulates attention by facilitation of brain deactivation in the default mode network (DMN). Thus, higher striatal DAT levels, which would result in an enhanced clearance of dopamine and hence weaker dopamine signals, would be associated to lower deactivation in the DMN during an attention task.
For this purpose we assessed the relationship between DAT in striatum (measured with positron emission tomography and [(11)C]cocaine used as DAT radiotracer) and brain activation and deactivation during a parametric visual attention task (measured with blood oxygenation level dependent functional magnetic resonance imaging) in healthy controls. We show that DAT availability in caudate and putamen had a negative correlation with deactivation in ventral parietal regions of the DMN (precuneus, BA 7) and a positive correlation with deactivation in a small region in the ventral anterior cingulate gyrus (BA 24/32). With increasing attentional load, DAT in caudate showed a negative correlation with load-related deactivation increases in precuneus.
These findings provide evidence that dopamine transporters modulate neural activity in the DMN and anterior cingulate gyrus during visuospatial attention. Our findings suggest that dopamine modulates attention in part by regulating neuronal activity in posterior parietal cortex including precuneus (region involved in alertness) and cingulate gyrus (region deactivated in proportion to emotional interference). These findings suggest that the beneficial effects of stimulant medications (increase dopamine by blocking DAT) in inattention reflect in part their ability to facilitate the deactivation of the DMN.</description><subject>Adult</subject><subject>Alcoholism</subject><subject>Alertness</subject><subject>Amphetamines</subject><subject>Attention</subject><subject>Attention deficit hyperactivity disorder</subject><subject>Attention task</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Brain</subject><subject>Brain - diagnostic imaging</subject><subject>Brain - metabolism</subject><subject>Brain mapping</subject><subject>Brain Mapping - methods</subject><subject>Brain research</subject><subject>Carbon Radioisotopes - pharmacology</subject><subject>Cocaine</subject><subject>Cocaine - pharmacology</subject><subject>Corpus Striatum - metabolism</subject><subject>Correlation</subject><subject>Cortex (cingulate)</subject><subject>Cortex (parietal)</subject><subject>Deactivation</subject><subject>Dopamine</subject><subject>Dopamine Plasma Membrane Transport Proteins - metabolism</subject><subject>Dopamine transporter</subject><subject>Emission analysis</subject><subject>Emission measurements</subject><subject>Error correction & detection</subject><subject>Family medical history</subject><subject>Functional magnetic resonance imaging</subject><subject>Humans</subject><subject>Hyperactivity</subject><subject>Hypotheses</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Laboratories</subject><subject>Magnetic fields</subject><subject>Magnetic resonance</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Medical imaging</subject><subject>Memory</subject><subject>Models, Biological</subject><subject>Neostriatum</subject><subject>Neuroimaging</subject><subject>Neurological Disorders/Neuroimaging</subject><subject>Neurological Disorders/Neuropsychiatric Disorders</subject><subject>Neurons</subject><subject>Neuroscience/Cognitive Neuroscience</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Oxygenation</subject><subject>Parkinson's disease</subject><subject>Parkinsons disease</subject><subject>Phenols (Class of compounds)</subject><subject>position emission tomography</subject><subject>Positron emission</subject><subject>Positron emission tomography</subject><subject>Positron-Emission Tomography - methods</subject><subject>Putamen</subject><subject>Radioactive tracers</subject><subject>statistical signal processing</subject><subject>Studies</subject><subject>thalamus</subject><subject>Urine</subject><subject>Vision, Ocular</subject><subject>Visual cortex</subject><subject>Visual perception</subject><subject>Visual tasks</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7rr6D0SLwoIXM-ajTZsbYVm_BhYW_LoNmeR0mrVNukk6o__e1Kk6I15IL1JOnvc9OSc5WfYYoyWmFX5540ZvZbccnIUlQohhRO5kp5hTsmAE0bsH_yfZgxBuECppzdj97ATzkhUc16fZ7rUbZG8s5NFLGwbnI_iQG5uH6I2MY58r5z10MkK-M7HNNUgVzVZG4-zExRZSrJFjF_PeacgtxJ3zX3M9emM3-daE0YUh8bLLZYxgJ-XD7F4juwCP5vUs-_z2zafL94ur63ery4urhWI1jwtWKQI1K2mxbiSVUlNOqxIKqDnGgEqsFSKIM4VTiDa6lDTpyBprhgukKD3Lnu59h84FMfcsCEySQV1XqErEak9oJ2_E4E0v_XfhpBE_A85vhPTRqA4EhZRC04oDVgWimFeMaE0g9RLhdcmS16s527juQatUq5fdkenxjjWt2LitIIzzspiO-2xv4EI0IigTQbXKWQsqCsxIRas6QedzFu9uRwhR9CYo6DppwY1BsKqgBJc4gc__Av_dgOWe2shUo7GNS0dT6dPQm5QbGpPiF0VFeF3hkifBiyNBYiJ8ixs5hiBWHz_8P3v95Zg9P2BbkF1sg-vG6b2EY7DYg8q7EDw0vzuMkZiG41edYhoOMQ9Hkj05vJ0_onka6A8_Lwxu</recordid><startdate>20090630</startdate><enddate>20090630</enddate><creator>Tomasi, Dardo</creator><creator>Volkow, Nora D</creator><creator>Wang, Ruiliang</creator><creator>Telang, Frank</creator><creator>Wang, Gene-Jack</creator><creator>Chang, Linda</creator><creator>Ernst, Thomas</creator><creator>Fowler, Joanna S</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20090630</creationdate><title>Dopamine transporters in striatum correlate with deactivation in the default mode network during visuospatial attention</title><author>Tomasi, Dardo ; Volkow, Nora D ; Wang, Ruiliang ; Telang, Frank ; Wang, Gene-Jack ; Chang, Linda ; Ernst, Thomas ; Fowler, Joanna S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c689t-67c2e86534bfa3aad39375e4e8911e051dc02096c14e83fd5a36892b1d6140c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Adult</topic><topic>Alcoholism</topic><topic>Alertness</topic><topic>Amphetamines</topic><topic>Attention</topic><topic>Attention deficit hyperactivity disorder</topic><topic>Attention task</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Brain</topic><topic>Brain - diagnostic imaging</topic><topic>Brain - metabolism</topic><topic>Brain mapping</topic><topic>Brain Mapping - methods</topic><topic>Brain research</topic><topic>Carbon Radioisotopes - pharmacology</topic><topic>Cocaine</topic><topic>Cocaine - pharmacology</topic><topic>Corpus Striatum - metabolism</topic><topic>Correlation</topic><topic>Cortex (cingulate)</topic><topic>Cortex (parietal)</topic><topic>Deactivation</topic><topic>Dopamine</topic><topic>Dopamine Plasma Membrane Transport Proteins - metabolism</topic><topic>Dopamine transporter</topic><topic>Emission analysis</topic><topic>Emission measurements</topic><topic>Error correction & detection</topic><topic>Family medical history</topic><topic>Functional magnetic resonance imaging</topic><topic>Humans</topic><topic>Hyperactivity</topic><topic>Hypotheses</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Laboratories</topic><topic>Magnetic fields</topic><topic>Magnetic resonance</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Medical imaging</topic><topic>Memory</topic><topic>Models, Biological</topic><topic>Neostriatum</topic><topic>Neuroimaging</topic><topic>Neurological Disorders/Neuroimaging</topic><topic>Neurological Disorders/Neuropsychiatric Disorders</topic><topic>Neurons</topic><topic>Neuroscience/Cognitive Neuroscience</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Oxygenation</topic><topic>Parkinson's disease</topic><topic>Parkinsons disease</topic><topic>Phenols (Class of compounds)</topic><topic>position emission tomography</topic><topic>Positron emission</topic><topic>Positron emission tomography</topic><topic>Positron-Emission Tomography - methods</topic><topic>Putamen</topic><topic>Radioactive tracers</topic><topic>statistical signal processing</topic><topic>Studies</topic><topic>thalamus</topic><topic>Urine</topic><topic>Vision, Ocular</topic><topic>Visual cortex</topic><topic>Visual perception</topic><topic>Visual tasks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tomasi, Dardo</creatorcontrib><creatorcontrib>Volkow, Nora D</creatorcontrib><creatorcontrib>Wang, Ruiliang</creatorcontrib><creatorcontrib>Telang, Frank</creatorcontrib><creatorcontrib>Wang, Gene-Jack</creatorcontrib><creatorcontrib>Chang, Linda</creatorcontrib><creatorcontrib>Ernst, Thomas</creatorcontrib><creatorcontrib>Fowler, Joanna S</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tomasi, Dardo</au><au>Volkow, Nora D</au><au>Wang, Ruiliang</au><au>Telang, Frank</au><au>Wang, Gene-Jack</au><au>Chang, Linda</au><au>Ernst, Thomas</au><au>Fowler, Joanna S</au><au>Rustichini, Aldo</au><aucorp>Brookhaven National Laboratory (BNL), Upton, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dopamine transporters in striatum correlate with deactivation in the default mode network during visuospatial attention</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2009-06-30</date><risdate>2009</risdate><volume>4</volume><issue>6</issue><spage>e6102</spage><epage>e6102</epage><pages>e6102-e6102</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Dopamine and dopamine transporters (DAT, which regulate extracellular dopamine in the brain) are implicated in the modulation of attention but their specific roles are not well understood. Here we hypothesized that dopamine modulates attention by facilitation of brain deactivation in the default mode network (DMN). Thus, higher striatal DAT levels, which would result in an enhanced clearance of dopamine and hence weaker dopamine signals, would be associated to lower deactivation in the DMN during an attention task.
For this purpose we assessed the relationship between DAT in striatum (measured with positron emission tomography and [(11)C]cocaine used as DAT radiotracer) and brain activation and deactivation during a parametric visual attention task (measured with blood oxygenation level dependent functional magnetic resonance imaging) in healthy controls. We show that DAT availability in caudate and putamen had a negative correlation with deactivation in ventral parietal regions of the DMN (precuneus, BA 7) and a positive correlation with deactivation in a small region in the ventral anterior cingulate gyrus (BA 24/32). With increasing attentional load, DAT in caudate showed a negative correlation with load-related deactivation increases in precuneus.
These findings provide evidence that dopamine transporters modulate neural activity in the DMN and anterior cingulate gyrus during visuospatial attention. Our findings suggest that dopamine modulates attention in part by regulating neuronal activity in posterior parietal cortex including precuneus (region involved in alertness) and cingulate gyrus (region deactivated in proportion to emotional interference). These findings suggest that the beneficial effects of stimulant medications (increase dopamine by blocking DAT) in inattention reflect in part their ability to facilitate the deactivation of the DMN.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>19564918</pmid><doi>10.1371/journal.pone.0006102</doi><tpages>e6102</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2009-06, Vol.4 (6), p.e6102-e6102 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1289188707 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Adult Alcoholism Alertness Amphetamines Attention Attention deficit hyperactivity disorder Attention task BASIC BIOLOGICAL SCIENCES Brain Brain - diagnostic imaging Brain - metabolism Brain mapping Brain Mapping - methods Brain research Carbon Radioisotopes - pharmacology Cocaine Cocaine - pharmacology Corpus Striatum - metabolism Correlation Cortex (cingulate) Cortex (parietal) Deactivation Dopamine Dopamine Plasma Membrane Transport Proteins - metabolism Dopamine transporter Emission analysis Emission measurements Error correction & detection Family medical history Functional magnetic resonance imaging Humans Hyperactivity Hypotheses Image Processing, Computer-Assisted - methods Laboratories Magnetic fields Magnetic resonance Magnetic resonance imaging Magnetic Resonance Imaging - methods Male Medical imaging Memory Models, Biological Neostriatum Neuroimaging Neurological Disorders/Neuroimaging Neurological Disorders/Neuropsychiatric Disorders Neurons Neuroscience/Cognitive Neuroscience NMR Nuclear magnetic resonance Oxygenation Parkinson's disease Parkinsons disease Phenols (Class of compounds) position emission tomography Positron emission Positron emission tomography Positron-Emission Tomography - methods Putamen Radioactive tracers statistical signal processing Studies thalamus Urine Vision, Ocular Visual cortex Visual perception Visual tasks |
title | Dopamine transporters in striatum correlate with deactivation in the default mode network during visuospatial attention |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T06%3A17%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dopamine%20transporters%20in%20striatum%20correlate%20with%20deactivation%20in%20the%20default%20mode%20network%20during%20visuospatial%20attention&rft.jtitle=PloS%20one&rft.au=Tomasi,%20Dardo&rft.aucorp=Brookhaven%20National%20Laboratory%20(BNL),%20Upton,%20NY%20(United%20States)&rft.date=2009-06-30&rft.volume=4&rft.issue=6&rft.spage=e6102&rft.epage=e6102&rft.pages=e6102-e6102&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0006102&rft_dat=%3Cgale_plos_%3EA472987159%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1289188707&rft_id=info:pmid/19564918&rft_galeid=A472987159&rft_doaj_id=oai_doaj_org_article_3e3fdd379e1c40319762dd2e64901b56&rfr_iscdi=true |