Dopamine transporters in striatum correlate with deactivation in the default mode network during visuospatial attention

Dopamine and dopamine transporters (DAT, which regulate extracellular dopamine in the brain) are implicated in the modulation of attention but their specific roles are not well understood. Here we hypothesized that dopamine modulates attention by facilitation of brain deactivation in the default mod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2009-06, Vol.4 (6), p.e6102-e6102
Hauptverfasser: Tomasi, Dardo, Volkow, Nora D, Wang, Ruiliang, Telang, Frank, Wang, Gene-Jack, Chang, Linda, Ernst, Thomas, Fowler, Joanna S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e6102
container_issue 6
container_start_page e6102
container_title PloS one
container_volume 4
creator Tomasi, Dardo
Volkow, Nora D
Wang, Ruiliang
Telang, Frank
Wang, Gene-Jack
Chang, Linda
Ernst, Thomas
Fowler, Joanna S
description Dopamine and dopamine transporters (DAT, which regulate extracellular dopamine in the brain) are implicated in the modulation of attention but their specific roles are not well understood. Here we hypothesized that dopamine modulates attention by facilitation of brain deactivation in the default mode network (DMN). Thus, higher striatal DAT levels, which would result in an enhanced clearance of dopamine and hence weaker dopamine signals, would be associated to lower deactivation in the DMN during an attention task. For this purpose we assessed the relationship between DAT in striatum (measured with positron emission tomography and [(11)C]cocaine used as DAT radiotracer) and brain activation and deactivation during a parametric visual attention task (measured with blood oxygenation level dependent functional magnetic resonance imaging) in healthy controls. We show that DAT availability in caudate and putamen had a negative correlation with deactivation in ventral parietal regions of the DMN (precuneus, BA 7) and a positive correlation with deactivation in a small region in the ventral anterior cingulate gyrus (BA 24/32). With increasing attentional load, DAT in caudate showed a negative correlation with load-related deactivation increases in precuneus. These findings provide evidence that dopamine transporters modulate neural activity in the DMN and anterior cingulate gyrus during visuospatial attention. Our findings suggest that dopamine modulates attention in part by regulating neuronal activity in posterior parietal cortex including precuneus (region involved in alertness) and cingulate gyrus (region deactivated in proportion to emotional interference). These findings suggest that the beneficial effects of stimulant medications (increase dopamine by blocking DAT) in inattention reflect in part their ability to facilitate the deactivation of the DMN.
doi_str_mv 10.1371/journal.pone.0006102
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1289188707</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A472987159</galeid><doaj_id>oai_doaj_org_article_3e3fdd379e1c40319762dd2e64901b56</doaj_id><sourcerecordid>A472987159</sourcerecordid><originalsourceid>FETCH-LOGICAL-c689t-67c2e86534bfa3aad39375e4e8911e051dc02096c14e83fd5a36892b1d6140c33</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7rr6D0SLwoIXM-ajTZsbYVm_BhYW_LoNmeR0mrVNukk6o__e1Kk6I15IL1JOnvc9OSc5WfYYoyWmFX5540ZvZbccnIUlQohhRO5kp5hTsmAE0bsH_yfZgxBuECppzdj97ATzkhUc16fZ7rUbZG8s5NFLGwbnI_iQG5uH6I2MY58r5z10MkK-M7HNNUgVzVZG4-zExRZSrJFjF_PeacgtxJ3zX3M9emM3-daE0YUh8bLLZYxgJ-XD7F4juwCP5vUs-_z2zafL94ur63ery4urhWI1jwtWKQI1K2mxbiSVUlNOqxIKqDnGgEqsFSKIM4VTiDa6lDTpyBprhgukKD3Lnu59h84FMfcsCEySQV1XqErEak9oJ2_E4E0v_XfhpBE_A85vhPTRqA4EhZRC04oDVgWimFeMaE0g9RLhdcmS16s527juQatUq5fdkenxjjWt2LitIIzzspiO-2xv4EI0IigTQbXKWQsqCsxIRas6QedzFu9uRwhR9CYo6DppwY1BsKqgBJc4gc__Av_dgOWe2shUo7GNS0dT6dPQm5QbGpPiF0VFeF3hkifBiyNBYiJ8ixs5hiBWHz_8P3v95Zg9P2BbkF1sg-vG6b2EY7DYg8q7EDw0vzuMkZiG41edYhoOMQ9Hkj05vJ0_onka6A8_Lwxu</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1289188707</pqid></control><display><type>article</type><title>Dopamine transporters in striatum correlate with deactivation in the default mode network during visuospatial attention</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Tomasi, Dardo ; Volkow, Nora D ; Wang, Ruiliang ; Telang, Frank ; Wang, Gene-Jack ; Chang, Linda ; Ernst, Thomas ; Fowler, Joanna S</creator><contributor>Rustichini, Aldo</contributor><creatorcontrib>Tomasi, Dardo ; Volkow, Nora D ; Wang, Ruiliang ; Telang, Frank ; Wang, Gene-Jack ; Chang, Linda ; Ernst, Thomas ; Fowler, Joanna S ; Brookhaven National Laboratory (BNL), Upton, NY (United States) ; Rustichini, Aldo</creatorcontrib><description>Dopamine and dopamine transporters (DAT, which regulate extracellular dopamine in the brain) are implicated in the modulation of attention but their specific roles are not well understood. Here we hypothesized that dopamine modulates attention by facilitation of brain deactivation in the default mode network (DMN). Thus, higher striatal DAT levels, which would result in an enhanced clearance of dopamine and hence weaker dopamine signals, would be associated to lower deactivation in the DMN during an attention task. For this purpose we assessed the relationship between DAT in striatum (measured with positron emission tomography and [(11)C]cocaine used as DAT radiotracer) and brain activation and deactivation during a parametric visual attention task (measured with blood oxygenation level dependent functional magnetic resonance imaging) in healthy controls. We show that DAT availability in caudate and putamen had a negative correlation with deactivation in ventral parietal regions of the DMN (precuneus, BA 7) and a positive correlation with deactivation in a small region in the ventral anterior cingulate gyrus (BA 24/32). With increasing attentional load, DAT in caudate showed a negative correlation with load-related deactivation increases in precuneus. These findings provide evidence that dopamine transporters modulate neural activity in the DMN and anterior cingulate gyrus during visuospatial attention. Our findings suggest that dopamine modulates attention in part by regulating neuronal activity in posterior parietal cortex including precuneus (region involved in alertness) and cingulate gyrus (region deactivated in proportion to emotional interference). These findings suggest that the beneficial effects of stimulant medications (increase dopamine by blocking DAT) in inattention reflect in part their ability to facilitate the deactivation of the DMN.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0006102</identifier><identifier>PMID: 19564918</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adult ; Alcoholism ; Alertness ; Amphetamines ; Attention ; Attention deficit hyperactivity disorder ; Attention task ; BASIC BIOLOGICAL SCIENCES ; Brain ; Brain - diagnostic imaging ; Brain - metabolism ; Brain mapping ; Brain Mapping - methods ; Brain research ; Carbon Radioisotopes - pharmacology ; Cocaine ; Cocaine - pharmacology ; Corpus Striatum - metabolism ; Correlation ; Cortex (cingulate) ; Cortex (parietal) ; Deactivation ; Dopamine ; Dopamine Plasma Membrane Transport Proteins - metabolism ; Dopamine transporter ; Emission analysis ; Emission measurements ; Error correction &amp; detection ; Family medical history ; Functional magnetic resonance imaging ; Humans ; Hyperactivity ; Hypotheses ; Image Processing, Computer-Assisted - methods ; Laboratories ; Magnetic fields ; Magnetic resonance ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Male ; Medical imaging ; Memory ; Models, Biological ; Neostriatum ; Neuroimaging ; Neurological Disorders/Neuroimaging ; Neurological Disorders/Neuropsychiatric Disorders ; Neurons ; Neuroscience/Cognitive Neuroscience ; NMR ; Nuclear magnetic resonance ; Oxygenation ; Parkinson's disease ; Parkinsons disease ; Phenols (Class of compounds) ; position emission tomography ; Positron emission ; Positron emission tomography ; Positron-Emission Tomography - methods ; Putamen ; Radioactive tracers ; statistical signal processing ; Studies ; thalamus ; Urine ; Vision, Ocular ; Visual cortex ; Visual perception ; Visual tasks</subject><ispartof>PloS one, 2009-06, Vol.4 (6), p.e6102-e6102</ispartof><rights>COPYRIGHT 2009 Public Library of Science</rights><rights>This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c689t-67c2e86534bfa3aad39375e4e8911e051dc02096c14e83fd5a36892b1d6140c33</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2699543/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2699543/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,862,883,2098,2917,23849,27907,27908,53774,53776,79351,79352</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19564918$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1627378$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><contributor>Rustichini, Aldo</contributor><creatorcontrib>Tomasi, Dardo</creatorcontrib><creatorcontrib>Volkow, Nora D</creatorcontrib><creatorcontrib>Wang, Ruiliang</creatorcontrib><creatorcontrib>Telang, Frank</creatorcontrib><creatorcontrib>Wang, Gene-Jack</creatorcontrib><creatorcontrib>Chang, Linda</creatorcontrib><creatorcontrib>Ernst, Thomas</creatorcontrib><creatorcontrib>Fowler, Joanna S</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><title>Dopamine transporters in striatum correlate with deactivation in the default mode network during visuospatial attention</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Dopamine and dopamine transporters (DAT, which regulate extracellular dopamine in the brain) are implicated in the modulation of attention but their specific roles are not well understood. Here we hypothesized that dopamine modulates attention by facilitation of brain deactivation in the default mode network (DMN). Thus, higher striatal DAT levels, which would result in an enhanced clearance of dopamine and hence weaker dopamine signals, would be associated to lower deactivation in the DMN during an attention task. For this purpose we assessed the relationship between DAT in striatum (measured with positron emission tomography and [(11)C]cocaine used as DAT radiotracer) and brain activation and deactivation during a parametric visual attention task (measured with blood oxygenation level dependent functional magnetic resonance imaging) in healthy controls. We show that DAT availability in caudate and putamen had a negative correlation with deactivation in ventral parietal regions of the DMN (precuneus, BA 7) and a positive correlation with deactivation in a small region in the ventral anterior cingulate gyrus (BA 24/32). With increasing attentional load, DAT in caudate showed a negative correlation with load-related deactivation increases in precuneus. These findings provide evidence that dopamine transporters modulate neural activity in the DMN and anterior cingulate gyrus during visuospatial attention. Our findings suggest that dopamine modulates attention in part by regulating neuronal activity in posterior parietal cortex including precuneus (region involved in alertness) and cingulate gyrus (region deactivated in proportion to emotional interference). These findings suggest that the beneficial effects of stimulant medications (increase dopamine by blocking DAT) in inattention reflect in part their ability to facilitate the deactivation of the DMN.</description><subject>Adult</subject><subject>Alcoholism</subject><subject>Alertness</subject><subject>Amphetamines</subject><subject>Attention</subject><subject>Attention deficit hyperactivity disorder</subject><subject>Attention task</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Brain</subject><subject>Brain - diagnostic imaging</subject><subject>Brain - metabolism</subject><subject>Brain mapping</subject><subject>Brain Mapping - methods</subject><subject>Brain research</subject><subject>Carbon Radioisotopes - pharmacology</subject><subject>Cocaine</subject><subject>Cocaine - pharmacology</subject><subject>Corpus Striatum - metabolism</subject><subject>Correlation</subject><subject>Cortex (cingulate)</subject><subject>Cortex (parietal)</subject><subject>Deactivation</subject><subject>Dopamine</subject><subject>Dopamine Plasma Membrane Transport Proteins - metabolism</subject><subject>Dopamine transporter</subject><subject>Emission analysis</subject><subject>Emission measurements</subject><subject>Error correction &amp; detection</subject><subject>Family medical history</subject><subject>Functional magnetic resonance imaging</subject><subject>Humans</subject><subject>Hyperactivity</subject><subject>Hypotheses</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Laboratories</subject><subject>Magnetic fields</subject><subject>Magnetic resonance</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Medical imaging</subject><subject>Memory</subject><subject>Models, Biological</subject><subject>Neostriatum</subject><subject>Neuroimaging</subject><subject>Neurological Disorders/Neuroimaging</subject><subject>Neurological Disorders/Neuropsychiatric Disorders</subject><subject>Neurons</subject><subject>Neuroscience/Cognitive Neuroscience</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Oxygenation</subject><subject>Parkinson's disease</subject><subject>Parkinsons disease</subject><subject>Phenols (Class of compounds)</subject><subject>position emission tomography</subject><subject>Positron emission</subject><subject>Positron emission tomography</subject><subject>Positron-Emission Tomography - methods</subject><subject>Putamen</subject><subject>Radioactive tracers</subject><subject>statistical signal processing</subject><subject>Studies</subject><subject>thalamus</subject><subject>Urine</subject><subject>Vision, Ocular</subject><subject>Visual cortex</subject><subject>Visual perception</subject><subject>Visual tasks</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7rr6D0SLwoIXM-ajTZsbYVm_BhYW_LoNmeR0mrVNukk6o__e1Kk6I15IL1JOnvc9OSc5WfYYoyWmFX5540ZvZbccnIUlQohhRO5kp5hTsmAE0bsH_yfZgxBuECppzdj97ATzkhUc16fZ7rUbZG8s5NFLGwbnI_iQG5uH6I2MY58r5z10MkK-M7HNNUgVzVZG4-zExRZSrJFjF_PeacgtxJ3zX3M9emM3-daE0YUh8bLLZYxgJ-XD7F4juwCP5vUs-_z2zafL94ur63ery4urhWI1jwtWKQI1K2mxbiSVUlNOqxIKqDnGgEqsFSKIM4VTiDa6lDTpyBprhgukKD3Lnu59h84FMfcsCEySQV1XqErEak9oJ2_E4E0v_XfhpBE_A85vhPTRqA4EhZRC04oDVgWimFeMaE0g9RLhdcmS16s527juQatUq5fdkenxjjWt2LitIIzzspiO-2xv4EI0IigTQbXKWQsqCsxIRas6QedzFu9uRwhR9CYo6DppwY1BsKqgBJc4gc__Av_dgOWe2shUo7GNS0dT6dPQm5QbGpPiF0VFeF3hkifBiyNBYiJ8ixs5hiBWHz_8P3v95Zg9P2BbkF1sg-vG6b2EY7DYg8q7EDw0vzuMkZiG41edYhoOMQ9Hkj05vJ0_onka6A8_Lwxu</recordid><startdate>20090630</startdate><enddate>20090630</enddate><creator>Tomasi, Dardo</creator><creator>Volkow, Nora D</creator><creator>Wang, Ruiliang</creator><creator>Telang, Frank</creator><creator>Wang, Gene-Jack</creator><creator>Chang, Linda</creator><creator>Ernst, Thomas</creator><creator>Fowler, Joanna S</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20090630</creationdate><title>Dopamine transporters in striatum correlate with deactivation in the default mode network during visuospatial attention</title><author>Tomasi, Dardo ; Volkow, Nora D ; Wang, Ruiliang ; Telang, Frank ; Wang, Gene-Jack ; Chang, Linda ; Ernst, Thomas ; Fowler, Joanna S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c689t-67c2e86534bfa3aad39375e4e8911e051dc02096c14e83fd5a36892b1d6140c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Adult</topic><topic>Alcoholism</topic><topic>Alertness</topic><topic>Amphetamines</topic><topic>Attention</topic><topic>Attention deficit hyperactivity disorder</topic><topic>Attention task</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Brain</topic><topic>Brain - diagnostic imaging</topic><topic>Brain - metabolism</topic><topic>Brain mapping</topic><topic>Brain Mapping - methods</topic><topic>Brain research</topic><topic>Carbon Radioisotopes - pharmacology</topic><topic>Cocaine</topic><topic>Cocaine - pharmacology</topic><topic>Corpus Striatum - metabolism</topic><topic>Correlation</topic><topic>Cortex (cingulate)</topic><topic>Cortex (parietal)</topic><topic>Deactivation</topic><topic>Dopamine</topic><topic>Dopamine Plasma Membrane Transport Proteins - metabolism</topic><topic>Dopamine transporter</topic><topic>Emission analysis</topic><topic>Emission measurements</topic><topic>Error correction &amp; detection</topic><topic>Family medical history</topic><topic>Functional magnetic resonance imaging</topic><topic>Humans</topic><topic>Hyperactivity</topic><topic>Hypotheses</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Laboratories</topic><topic>Magnetic fields</topic><topic>Magnetic resonance</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Medical imaging</topic><topic>Memory</topic><topic>Models, Biological</topic><topic>Neostriatum</topic><topic>Neuroimaging</topic><topic>Neurological Disorders/Neuroimaging</topic><topic>Neurological Disorders/Neuropsychiatric Disorders</topic><topic>Neurons</topic><topic>Neuroscience/Cognitive Neuroscience</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Oxygenation</topic><topic>Parkinson's disease</topic><topic>Parkinsons disease</topic><topic>Phenols (Class of compounds)</topic><topic>position emission tomography</topic><topic>Positron emission</topic><topic>Positron emission tomography</topic><topic>Positron-Emission Tomography - methods</topic><topic>Putamen</topic><topic>Radioactive tracers</topic><topic>statistical signal processing</topic><topic>Studies</topic><topic>thalamus</topic><topic>Urine</topic><topic>Vision, Ocular</topic><topic>Visual cortex</topic><topic>Visual perception</topic><topic>Visual tasks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tomasi, Dardo</creatorcontrib><creatorcontrib>Volkow, Nora D</creatorcontrib><creatorcontrib>Wang, Ruiliang</creatorcontrib><creatorcontrib>Telang, Frank</creatorcontrib><creatorcontrib>Wang, Gene-Jack</creatorcontrib><creatorcontrib>Chang, Linda</creatorcontrib><creatorcontrib>Ernst, Thomas</creatorcontrib><creatorcontrib>Fowler, Joanna S</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tomasi, Dardo</au><au>Volkow, Nora D</au><au>Wang, Ruiliang</au><au>Telang, Frank</au><au>Wang, Gene-Jack</au><au>Chang, Linda</au><au>Ernst, Thomas</au><au>Fowler, Joanna S</au><au>Rustichini, Aldo</au><aucorp>Brookhaven National Laboratory (BNL), Upton, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dopamine transporters in striatum correlate with deactivation in the default mode network during visuospatial attention</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2009-06-30</date><risdate>2009</risdate><volume>4</volume><issue>6</issue><spage>e6102</spage><epage>e6102</epage><pages>e6102-e6102</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Dopamine and dopamine transporters (DAT, which regulate extracellular dopamine in the brain) are implicated in the modulation of attention but their specific roles are not well understood. Here we hypothesized that dopamine modulates attention by facilitation of brain deactivation in the default mode network (DMN). Thus, higher striatal DAT levels, which would result in an enhanced clearance of dopamine and hence weaker dopamine signals, would be associated to lower deactivation in the DMN during an attention task. For this purpose we assessed the relationship between DAT in striatum (measured with positron emission tomography and [(11)C]cocaine used as DAT radiotracer) and brain activation and deactivation during a parametric visual attention task (measured with blood oxygenation level dependent functional magnetic resonance imaging) in healthy controls. We show that DAT availability in caudate and putamen had a negative correlation with deactivation in ventral parietal regions of the DMN (precuneus, BA 7) and a positive correlation with deactivation in a small region in the ventral anterior cingulate gyrus (BA 24/32). With increasing attentional load, DAT in caudate showed a negative correlation with load-related deactivation increases in precuneus. These findings provide evidence that dopamine transporters modulate neural activity in the DMN and anterior cingulate gyrus during visuospatial attention. Our findings suggest that dopamine modulates attention in part by regulating neuronal activity in posterior parietal cortex including precuneus (region involved in alertness) and cingulate gyrus (region deactivated in proportion to emotional interference). These findings suggest that the beneficial effects of stimulant medications (increase dopamine by blocking DAT) in inattention reflect in part their ability to facilitate the deactivation of the DMN.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>19564918</pmid><doi>10.1371/journal.pone.0006102</doi><tpages>e6102</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2009-06, Vol.4 (6), p.e6102-e6102
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1289188707
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry
subjects Adult
Alcoholism
Alertness
Amphetamines
Attention
Attention deficit hyperactivity disorder
Attention task
BASIC BIOLOGICAL SCIENCES
Brain
Brain - diagnostic imaging
Brain - metabolism
Brain mapping
Brain Mapping - methods
Brain research
Carbon Radioisotopes - pharmacology
Cocaine
Cocaine - pharmacology
Corpus Striatum - metabolism
Correlation
Cortex (cingulate)
Cortex (parietal)
Deactivation
Dopamine
Dopamine Plasma Membrane Transport Proteins - metabolism
Dopamine transporter
Emission analysis
Emission measurements
Error correction & detection
Family medical history
Functional magnetic resonance imaging
Humans
Hyperactivity
Hypotheses
Image Processing, Computer-Assisted - methods
Laboratories
Magnetic fields
Magnetic resonance
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Male
Medical imaging
Memory
Models, Biological
Neostriatum
Neuroimaging
Neurological Disorders/Neuroimaging
Neurological Disorders/Neuropsychiatric Disorders
Neurons
Neuroscience/Cognitive Neuroscience
NMR
Nuclear magnetic resonance
Oxygenation
Parkinson's disease
Parkinsons disease
Phenols (Class of compounds)
position emission tomography
Positron emission
Positron emission tomography
Positron-Emission Tomography - methods
Putamen
Radioactive tracers
statistical signal processing
Studies
thalamus
Urine
Vision, Ocular
Visual cortex
Visual perception
Visual tasks
title Dopamine transporters in striatum correlate with deactivation in the default mode network during visuospatial attention
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T06%3A17%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dopamine%20transporters%20in%20striatum%20correlate%20with%20deactivation%20in%20the%20default%20mode%20network%20during%20visuospatial%20attention&rft.jtitle=PloS%20one&rft.au=Tomasi,%20Dardo&rft.aucorp=Brookhaven%20National%20Laboratory%20(BNL),%20Upton,%20NY%20(United%20States)&rft.date=2009-06-30&rft.volume=4&rft.issue=6&rft.spage=e6102&rft.epage=e6102&rft.pages=e6102-e6102&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0006102&rft_dat=%3Cgale_plos_%3EA472987159%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1289188707&rft_id=info:pmid/19564918&rft_galeid=A472987159&rft_doaj_id=oai_doaj_org_article_3e3fdd379e1c40319762dd2e64901b56&rfr_iscdi=true