The ELG1 clamp loader plays a role in sister chromatid cohesion

Mutations in the ELG1 gene of yeast lead to genomic instability, manifested in high levels of genetic recombination, chromosome loss, and gross chromosomal rearrangements. Elg1 shows similarity to the large subunit of the Replication Factor C clamp loader, and forms a RFC-like (RLC) complex in conju...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2009-05, Vol.4 (5), p.e5497-e5497
Hauptverfasser: Parnas, Oren, Zipin-Roitman, Adi, Mazor, Yuval, Liefshitz, Batia, Ben-Aroya, Shay, Kupiec, Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e5497
container_issue 5
container_start_page e5497
container_title PloS one
container_volume 4
creator Parnas, Oren
Zipin-Roitman, Adi
Mazor, Yuval
Liefshitz, Batia
Ben-Aroya, Shay
Kupiec, Martin
description Mutations in the ELG1 gene of yeast lead to genomic instability, manifested in high levels of genetic recombination, chromosome loss, and gross chromosomal rearrangements. Elg1 shows similarity to the large subunit of the Replication Factor C clamp loader, and forms a RFC-like (RLC) complex in conjunction with the 4 small RFC subunits. Two additional RLCs exist in yeast: in one of them the large subunit is Ctf18, and in the other, Rad24. Ctf18 has been characterized as the RLC that functions in sister chromatid cohesion. Here we present evidence that the Elg1 RLC (but not Rad24) also plays an important role in this process. A genetic screen identified the cohesin subunit Mcd1/Scc1 and its loader Scc2 as suppressors of the synthetic lethality between elg1 and ctf4. We describe genetic interactions between ELG1 and genes encoding cohesin subunits and their accessory proteins. We also show that defects in Elg1 lead to higher precocious sister chromatid separation, and that Ctf18 and Elg1 affect cohesion via a joint pathway. Finally, we localize both Ctf18 and Elg1 to chromatin and show that Elg1 plays a role in the recruitment of Ctf18. Our results suggest that Elg1, Ctf4, and Ctf18 may coordinate the relative movement of the replication fork with respect to the cohesin ring.
doi_str_mv 10.1371/journal.pone.0005497
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1289181315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A473168265</galeid><doaj_id>oai_doaj_org_article_50ec61e212b54c31927a891be1fbce54</doaj_id><sourcerecordid>A473168265</sourcerecordid><originalsourceid>FETCH-LOGICAL-c759t-117e2dddb7fd927667252a53945c2356dbb87f5459dff2e4f765a350cb18c1c3</originalsourceid><addsrcrecordid>eNqNkl2L1DAUhoso7of-A9GCsODFjM13e7OyLOs6MLCgg7chTU6nGdJmTFpx__1mdqrOiIj0ou3Jc96cN3mz7BUq5ogI9H7jx9ArN9_6HuZFUTBaiSfZKaoInnFckKcH3yfZWYybxJCS8-fZCaooST_oNPuwaiG_Wd6iXDvVbXPnlYGQb526j7nKg3eQ2z6PNg6prNvgOzVYk2vfQrS-f5E9a5SL8HJ6n2erjzer60-z5d3t4vpqOdOCVcMMIQHYGFOLxlRYcC4ww4qRijKNCeOmrkvRMMoq0zQYaCM4U4QVukalRpqcZ2_2slvno5ysR4lwWaESEcQSsdgTxquN3AbbqXAvvbLyseDDWqowWO1AsgI0R4ARrhnVBKWBVNKpATW1BkaT1uW021h3YDT0Q1DuSPR4pbetXPvvEvM0dyGSwMUkEPy3EeIgOxs1OKd68GOUyX7y_7jTv0FccIYo3YFv_wD_fgjzPbVWyaftG5_G0-kx0FmdgtLYVL-igiBeYr5reHfUkJgBfgxrNcYoF18-_z979_WYvThgW1BuaKN345AiE49Bugd18DEGaH6dMirkLuc_fcpdzuWU89T2-vCGfjdNwSYPUBL2ng</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1289181315</pqid></control><display><type>article</type><title>The ELG1 clamp loader plays a role in sister chromatid cohesion</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Parnas, Oren ; Zipin-Roitman, Adi ; Mazor, Yuval ; Liefshitz, Batia ; Ben-Aroya, Shay ; Kupiec, Martin</creator><contributor>Fairhead, Cecile</contributor><creatorcontrib>Parnas, Oren ; Zipin-Roitman, Adi ; Mazor, Yuval ; Liefshitz, Batia ; Ben-Aroya, Shay ; Kupiec, Martin ; Fairhead, Cecile</creatorcontrib><description>Mutations in the ELG1 gene of yeast lead to genomic instability, manifested in high levels of genetic recombination, chromosome loss, and gross chromosomal rearrangements. Elg1 shows similarity to the large subunit of the Replication Factor C clamp loader, and forms a RFC-like (RLC) complex in conjunction with the 4 small RFC subunits. Two additional RLCs exist in yeast: in one of them the large subunit is Ctf18, and in the other, Rad24. Ctf18 has been characterized as the RLC that functions in sister chromatid cohesion. Here we present evidence that the Elg1 RLC (but not Rad24) also plays an important role in this process. A genetic screen identified the cohesin subunit Mcd1/Scc1 and its loader Scc2 as suppressors of the synthetic lethality between elg1 and ctf4. We describe genetic interactions between ELG1 and genes encoding cohesin subunits and their accessory proteins. We also show that defects in Elg1 lead to higher precocious sister chromatid separation, and that Ctf18 and Elg1 affect cohesion via a joint pathway. Finally, we localize both Ctf18 and Elg1 to chromatin and show that Elg1 plays a role in the recruitment of Ctf18. Our results suggest that Elg1, Ctf4, and Ctf18 may coordinate the relative movement of the replication fork with respect to the cohesin ring.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0005497</identifier><identifier>PMID: 19430531</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Baking yeast ; Blotting, Western ; Carrier Proteins - genetics ; Carrier Proteins - metabolism ; Carrier Proteins - physiology ; Cell Cycle Proteins - genetics ; Cell Cycle Proteins - metabolism ; Chromatids - physiology ; Chromatin ; Chromatin - metabolism ; Chromosomal Proteins, Non-Histone - genetics ; Chromosomal Proteins, Non-Histone - metabolism ; Chromosome rearrangements ; Chromosome Segregation ; Chromosomes ; Cohesin ; Cohesion ; DNA damage ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Genetic aspects ; Genetic screening ; Genetics and Genomics/Chromosome Biology ; Genetics and Genomics/Disease Models ; Genetics and Genomics/Medical Genetics ; Genetics and Genomics/Nuclear Structure and Function ; Genomic instability ; Lethality ; Mutation ; Plasmids - genetics ; Protein Binding ; Proteins ; Recombination ; Recruitment ; Replication ; Replication factor C ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - growth &amp; development ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Saccharomyces cerevisiae Proteins - physiology ; Sister Chromatid Exchange ; Stability ; Suppressors ; Yeast</subject><ispartof>PloS one, 2009-05, Vol.4 (5), p.e5497-e5497</ispartof><rights>COPYRIGHT 2009 Public Library of Science</rights><rights>2009 Parnas et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Parnas et al. 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c759t-117e2dddb7fd927667252a53945c2356dbb87f5459dff2e4f765a350cb18c1c3</citedby><cites>FETCH-LOGICAL-c759t-117e2dddb7fd927667252a53945c2356dbb87f5459dff2e4f765a350cb18c1c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2676507/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2676507/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19430531$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Fairhead, Cecile</contributor><creatorcontrib>Parnas, Oren</creatorcontrib><creatorcontrib>Zipin-Roitman, Adi</creatorcontrib><creatorcontrib>Mazor, Yuval</creatorcontrib><creatorcontrib>Liefshitz, Batia</creatorcontrib><creatorcontrib>Ben-Aroya, Shay</creatorcontrib><creatorcontrib>Kupiec, Martin</creatorcontrib><title>The ELG1 clamp loader plays a role in sister chromatid cohesion</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Mutations in the ELG1 gene of yeast lead to genomic instability, manifested in high levels of genetic recombination, chromosome loss, and gross chromosomal rearrangements. Elg1 shows similarity to the large subunit of the Replication Factor C clamp loader, and forms a RFC-like (RLC) complex in conjunction with the 4 small RFC subunits. Two additional RLCs exist in yeast: in one of them the large subunit is Ctf18, and in the other, Rad24. Ctf18 has been characterized as the RLC that functions in sister chromatid cohesion. Here we present evidence that the Elg1 RLC (but not Rad24) also plays an important role in this process. A genetic screen identified the cohesin subunit Mcd1/Scc1 and its loader Scc2 as suppressors of the synthetic lethality between elg1 and ctf4. We describe genetic interactions between ELG1 and genes encoding cohesin subunits and their accessory proteins. We also show that defects in Elg1 lead to higher precocious sister chromatid separation, and that Ctf18 and Elg1 affect cohesion via a joint pathway. Finally, we localize both Ctf18 and Elg1 to chromatin and show that Elg1 plays a role in the recruitment of Ctf18. Our results suggest that Elg1, Ctf4, and Ctf18 may coordinate the relative movement of the replication fork with respect to the cohesin ring.</description><subject>Baking yeast</subject><subject>Blotting, Western</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - metabolism</subject><subject>Carrier Proteins - physiology</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Chromatids - physiology</subject><subject>Chromatin</subject><subject>Chromatin - metabolism</subject><subject>Chromosomal Proteins, Non-Histone - genetics</subject><subject>Chromosomal Proteins, Non-Histone - metabolism</subject><subject>Chromosome rearrangements</subject><subject>Chromosome Segregation</subject><subject>Chromosomes</subject><subject>Cohesin</subject><subject>Cohesion</subject><subject>DNA damage</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Genetic aspects</subject><subject>Genetic screening</subject><subject>Genetics and Genomics/Chromosome Biology</subject><subject>Genetics and Genomics/Disease Models</subject><subject>Genetics and Genomics/Medical Genetics</subject><subject>Genetics and Genomics/Nuclear Structure and Function</subject><subject>Genomic instability</subject><subject>Lethality</subject><subject>Mutation</subject><subject>Plasmids - genetics</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>Recombination</subject><subject>Recruitment</subject><subject>Replication</subject><subject>Replication factor C</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - growth &amp; development</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - physiology</subject><subject>Sister Chromatid Exchange</subject><subject>Stability</subject><subject>Suppressors</subject><subject>Yeast</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAUhoso7of-A9GCsODFjM13e7OyLOs6MLCgg7chTU6nGdJmTFpx__1mdqrOiIj0ou3Jc96cN3mz7BUq5ogI9H7jx9ArN9_6HuZFUTBaiSfZKaoInnFckKcH3yfZWYybxJCS8-fZCaooST_oNPuwaiG_Wd6iXDvVbXPnlYGQb526j7nKg3eQ2z6PNg6prNvgOzVYk2vfQrS-f5E9a5SL8HJ6n2erjzer60-z5d3t4vpqOdOCVcMMIQHYGFOLxlRYcC4ww4qRijKNCeOmrkvRMMoq0zQYaCM4U4QVukalRpqcZ2_2slvno5ysR4lwWaESEcQSsdgTxquN3AbbqXAvvbLyseDDWqowWO1AsgI0R4ARrhnVBKWBVNKpATW1BkaT1uW021h3YDT0Q1DuSPR4pbetXPvvEvM0dyGSwMUkEPy3EeIgOxs1OKd68GOUyX7y_7jTv0FccIYo3YFv_wD_fgjzPbVWyaftG5_G0-kx0FmdgtLYVL-igiBeYr5reHfUkJgBfgxrNcYoF18-_z979_WYvThgW1BuaKN345AiE49Bugd18DEGaH6dMirkLuc_fcpdzuWU89T2-vCGfjdNwSYPUBL2ng</recordid><startdate>20090511</startdate><enddate>20090511</enddate><creator>Parnas, Oren</creator><creator>Zipin-Roitman, Adi</creator><creator>Mazor, Yuval</creator><creator>Liefshitz, Batia</creator><creator>Ben-Aroya, Shay</creator><creator>Kupiec, Martin</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20090511</creationdate><title>The ELG1 clamp loader plays a role in sister chromatid cohesion</title><author>Parnas, Oren ; Zipin-Roitman, Adi ; Mazor, Yuval ; Liefshitz, Batia ; Ben-Aroya, Shay ; Kupiec, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c759t-117e2dddb7fd927667252a53945c2356dbb87f5459dff2e4f765a350cb18c1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Baking yeast</topic><topic>Blotting, Western</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - metabolism</topic><topic>Carrier Proteins - physiology</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Chromatids - physiology</topic><topic>Chromatin</topic><topic>Chromatin - metabolism</topic><topic>Chromosomal Proteins, Non-Histone - genetics</topic><topic>Chromosomal Proteins, Non-Histone - metabolism</topic><topic>Chromosome rearrangements</topic><topic>Chromosome Segregation</topic><topic>Chromosomes</topic><topic>Cohesin</topic><topic>Cohesion</topic><topic>DNA damage</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Genetic aspects</topic><topic>Genetic screening</topic><topic>Genetics and Genomics/Chromosome Biology</topic><topic>Genetics and Genomics/Disease Models</topic><topic>Genetics and Genomics/Medical Genetics</topic><topic>Genetics and Genomics/Nuclear Structure and Function</topic><topic>Genomic instability</topic><topic>Lethality</topic><topic>Mutation</topic><topic>Plasmids - genetics</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>Recombination</topic><topic>Recruitment</topic><topic>Replication</topic><topic>Replication factor C</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - growth &amp; development</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - physiology</topic><topic>Sister Chromatid Exchange</topic><topic>Stability</topic><topic>Suppressors</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parnas, Oren</creatorcontrib><creatorcontrib>Zipin-Roitman, Adi</creatorcontrib><creatorcontrib>Mazor, Yuval</creatorcontrib><creatorcontrib>Liefshitz, Batia</creatorcontrib><creatorcontrib>Ben-Aroya, Shay</creatorcontrib><creatorcontrib>Kupiec, Martin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parnas, Oren</au><au>Zipin-Roitman, Adi</au><au>Mazor, Yuval</au><au>Liefshitz, Batia</au><au>Ben-Aroya, Shay</au><au>Kupiec, Martin</au><au>Fairhead, Cecile</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The ELG1 clamp loader plays a role in sister chromatid cohesion</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2009-05-11</date><risdate>2009</risdate><volume>4</volume><issue>5</issue><spage>e5497</spage><epage>e5497</epage><pages>e5497-e5497</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Mutations in the ELG1 gene of yeast lead to genomic instability, manifested in high levels of genetic recombination, chromosome loss, and gross chromosomal rearrangements. Elg1 shows similarity to the large subunit of the Replication Factor C clamp loader, and forms a RFC-like (RLC) complex in conjunction with the 4 small RFC subunits. Two additional RLCs exist in yeast: in one of them the large subunit is Ctf18, and in the other, Rad24. Ctf18 has been characterized as the RLC that functions in sister chromatid cohesion. Here we present evidence that the Elg1 RLC (but not Rad24) also plays an important role in this process. A genetic screen identified the cohesin subunit Mcd1/Scc1 and its loader Scc2 as suppressors of the synthetic lethality between elg1 and ctf4. We describe genetic interactions between ELG1 and genes encoding cohesin subunits and their accessory proteins. We also show that defects in Elg1 lead to higher precocious sister chromatid separation, and that Ctf18 and Elg1 affect cohesion via a joint pathway. Finally, we localize both Ctf18 and Elg1 to chromatin and show that Elg1 plays a role in the recruitment of Ctf18. Our results suggest that Elg1, Ctf4, and Ctf18 may coordinate the relative movement of the replication fork with respect to the cohesin ring.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>19430531</pmid><doi>10.1371/journal.pone.0005497</doi><tpages>e5497</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2009-05, Vol.4 (5), p.e5497-e5497
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1289181315
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central; Free Full-Text Journals in Chemistry
subjects Baking yeast
Blotting, Western
Carrier Proteins - genetics
Carrier Proteins - metabolism
Carrier Proteins - physiology
Cell Cycle Proteins - genetics
Cell Cycle Proteins - metabolism
Chromatids - physiology
Chromatin
Chromatin - metabolism
Chromosomal Proteins, Non-Histone - genetics
Chromosomal Proteins, Non-Histone - metabolism
Chromosome rearrangements
Chromosome Segregation
Chromosomes
Cohesin
Cohesion
DNA damage
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
Genetic aspects
Genetic screening
Genetics and Genomics/Chromosome Biology
Genetics and Genomics/Disease Models
Genetics and Genomics/Medical Genetics
Genetics and Genomics/Nuclear Structure and Function
Genomic instability
Lethality
Mutation
Plasmids - genetics
Protein Binding
Proteins
Recombination
Recruitment
Replication
Replication factor C
Saccharomyces cerevisiae
Saccharomyces cerevisiae - growth & development
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Saccharomyces cerevisiae Proteins - physiology
Sister Chromatid Exchange
Stability
Suppressors
Yeast
title The ELG1 clamp loader plays a role in sister chromatid cohesion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T05%3A40%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20ELG1%20clamp%20loader%20plays%20a%20role%20in%20sister%20chromatid%20cohesion&rft.jtitle=PloS%20one&rft.au=Parnas,%20Oren&rft.date=2009-05-11&rft.volume=4&rft.issue=5&rft.spage=e5497&rft.epage=e5497&rft.pages=e5497-e5497&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0005497&rft_dat=%3Cgale_plos_%3EA473168265%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1289181315&rft_id=info:pmid/19430531&rft_galeid=A473168265&rft_doaj_id=oai_doaj_org_article_50ec61e212b54c31927a891be1fbce54&rfr_iscdi=true