PKC signaling regulates drug resistance of the fungal pathogen Candida albicans via circuitry comprised of Mkc1, calcineurin, and Hsp90
Fungal pathogens exploit diverse mechanisms to survive exposure to antifungal drugs. This poses concern given the limited number of clinically useful antifungals and the growing population of immunocompromised individuals vulnerable to life-threatening fungal infection. To identify molecules that ab...
Gespeichert in:
Veröffentlicht in: | PLoS pathogens 2010-08, Vol.6 (8), p.e1001069-e1001069 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1001069 |
---|---|
container_issue | 8 |
container_start_page | e1001069 |
container_title | PLoS pathogens |
container_volume | 6 |
creator | LaFayette, Shantelle L Collins, Cathy Zaas, Aimee K Schell, Wiley A Betancourt-Quiroz, Marisol Gunatilaka, A A Leslie Perfect, John R Cowen, Leah E |
description | Fungal pathogens exploit diverse mechanisms to survive exposure to antifungal drugs. This poses concern given the limited number of clinically useful antifungals and the growing population of immunocompromised individuals vulnerable to life-threatening fungal infection. To identify molecules that abrogate resistance to the most widely deployed class of antifungals, the azoles, we conducted a screen of 1,280 pharmacologically active compounds. Three out of seven hits that abolished azole resistance of a resistant mutant of the model yeast Saccharomyces cerevisiae and a clinical isolate of the leading human fungal pathogen Candida albicans were inhibitors of protein kinase C (PKC), which regulates cell wall integrity during growth, morphogenesis, and response to cell wall stress. Pharmacological or genetic impairment of Pkc1 conferred hypersensitivity to multiple drugs that target synthesis of the key cell membrane sterol ergosterol, including azoles, allylamines, and morpholines. Pkc1 enabled survival of cell membrane stress at least in part via the mitogen activated protein kinase (MAPK) cascade in both species, though through distinct downstream effectors. Strikingly, inhibition of Pkc1 phenocopied inhibition of the molecular chaperone Hsp90 or its client protein calcineurin. PKC signaling was required for calcineurin activation in response to drug exposure in S. cerevisiae. In contrast, Pkc1 and calcineurin independently regulate drug resistance via a common target in C. albicans. We identified an additional level of regulatory control in the C. albicans circuitry linking PKC signaling, Hsp90, and calcineurin as genetic reduction of Hsp90 led to depletion of the terminal MAPK, Mkc1. Deletion of C. albicans PKC1 rendered fungistatic ergosterol biosynthesis inhibitors fungicidal and attenuated virulence in a murine model of systemic candidiasis. This work establishes a new role for PKC signaling in drug resistance, novel circuitry through which Hsp90 regulates drug resistance, and that targeting stress response signaling provides a promising strategy for treating life-threatening fungal infections. |
doi_str_mv | 10.1371/journal.ppat.1001069 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1289122420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A236729621</galeid><doaj_id>oai_doaj_org_article_4a3fa07504f64bd1816fc6d3d9ba11ea</doaj_id><sourcerecordid>A236729621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c730t-928b0b823b649868b44f148bfcd8f71ecbb39ac16fd6054b4e34705c85f6ee253</originalsourceid><addsrcrecordid>eNqVk12L1DAUhoso7rr6D0QDXoiwM-arSXojLIO6g-sHflyHJE06GTvJmLSL-wv826bO7LIDgkgv0p4873uac3Kq6jGCc0Q4ermOYwqqn2-3apgjCBFkzZ3qGNU1mXHC6d1b70fVg5zXEFJEELtfHWEoWI04Pq5-fXq3ANl3xcmHDiTbjb0abAZtGqfP7POggrEgOjCsLHBj6FQPSs5V7GwACxVa3yqgeu2NChlcegWMT2b0Q7oCJm62yWfbTvr33w06BUb1xgc7Jh9OQVGD87xt4MPqnlN9to_260n17c3rr4vz2cXHt8vF2cXMcAKHWYOFhlpgohltBBOaUoeo0M60wnFkjdakUQYx1zJYU00toRzWRtSOWYtrclI93flu-5jlvoZZIiwahDHFsBDLHdFGtZbl7zcqXcmovPwTiKmTKg3e9FZSRZyCvIbUMapbJEpew1rSNlohZFXxerXPNuqNbY0NQ1L9genhTvAr2cVLictBBcTF4PneIMUfo82D3PhsbN-rYOOYZYMEJLxGzT9JXpeGC8En8tmOLI200gcXS2oz0fIME8ZxwzAq1PwvVHlau_EmBut8iR8IXhwICjPYn0Onxpzl8svn_2A_HLJ0x5oUc07W3ZQPQTlNwnUX5TQJcj8JRfbkdulvRNdXn_wGS-0FYw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>755178879</pqid></control><display><type>article</type><title>PKC signaling regulates drug resistance of the fungal pathogen Candida albicans via circuitry comprised of Mkc1, calcineurin, and Hsp90</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>LaFayette, Shantelle L ; Collins, Cathy ; Zaas, Aimee K ; Schell, Wiley A ; Betancourt-Quiroz, Marisol ; Gunatilaka, A A Leslie ; Perfect, John R ; Cowen, Leah E</creator><contributor>Mitchell, Aaron P.</contributor><creatorcontrib>LaFayette, Shantelle L ; Collins, Cathy ; Zaas, Aimee K ; Schell, Wiley A ; Betancourt-Quiroz, Marisol ; Gunatilaka, A A Leslie ; Perfect, John R ; Cowen, Leah E ; Mitchell, Aaron P.</creatorcontrib><description>Fungal pathogens exploit diverse mechanisms to survive exposure to antifungal drugs. This poses concern given the limited number of clinically useful antifungals and the growing population of immunocompromised individuals vulnerable to life-threatening fungal infection. To identify molecules that abrogate resistance to the most widely deployed class of antifungals, the azoles, we conducted a screen of 1,280 pharmacologically active compounds. Three out of seven hits that abolished azole resistance of a resistant mutant of the model yeast Saccharomyces cerevisiae and a clinical isolate of the leading human fungal pathogen Candida albicans were inhibitors of protein kinase C (PKC), which regulates cell wall integrity during growth, morphogenesis, and response to cell wall stress. Pharmacological or genetic impairment of Pkc1 conferred hypersensitivity to multiple drugs that target synthesis of the key cell membrane sterol ergosterol, including azoles, allylamines, and morpholines. Pkc1 enabled survival of cell membrane stress at least in part via the mitogen activated protein kinase (MAPK) cascade in both species, though through distinct downstream effectors. Strikingly, inhibition of Pkc1 phenocopied inhibition of the molecular chaperone Hsp90 or its client protein calcineurin. PKC signaling was required for calcineurin activation in response to drug exposure in S. cerevisiae. In contrast, Pkc1 and calcineurin independently regulate drug resistance via a common target in C. albicans. We identified an additional level of regulatory control in the C. albicans circuitry linking PKC signaling, Hsp90, and calcineurin as genetic reduction of Hsp90 led to depletion of the terminal MAPK, Mkc1. Deletion of C. albicans PKC1 rendered fungistatic ergosterol biosynthesis inhibitors fungicidal and attenuated virulence in a murine model of systemic candidiasis. This work establishes a new role for PKC signaling in drug resistance, novel circuitry through which Hsp90 regulates drug resistance, and that targeting stress response signaling provides a promising strategy for treating life-threatening fungal infections.</description><identifier>ISSN: 1553-7374</identifier><identifier>ISSN: 1553-7366</identifier><identifier>EISSN: 1553-7374</identifier><identifier>DOI: 10.1371/journal.ppat.1001069</identifier><identifier>PMID: 20865172</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Antifungal Agents - pharmacology ; Calcineurin ; Calcineurin - genetics ; Calcineurin - metabolism ; Candida albicans ; Candida albicans - genetics ; Candida albicans - metabolism ; Drug resistance in microorganisms ; Drug Resistance, Fungal - genetics ; Fungal Proteins - genetics ; Fungal Proteins - metabolism ; Fungi ; Heat shock proteins ; HSP90 Heat-Shock Proteins - genetics ; HSP90 Heat-Shock Proteins - metabolism ; Immunoblotting ; Infectious Diseases/Antimicrobials and Drug Resistance ; Infectious Diseases/Fungal Infections ; Kinases ; Medical research ; Mice ; Microbial Sensitivity Tests ; Mitogen-Activated Protein Kinases - genetics ; Mitogen-Activated Protein Kinases - metabolism ; Mortality ; Physiological aspects ; Protein Kinase C - metabolism ; Protein kinases ; Proteins ; Reverse Transcriptase Polymerase Chain Reaction ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Signal Transduction - physiology</subject><ispartof>PLoS pathogens, 2010-08, Vol.6 (8), p.e1001069-e1001069</ispartof><rights>COPYRIGHT 2010 Public Library of Science</rights><rights>LaFayette et al. 2010</rights><rights>2010 LaFayette et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: LaFayette SL, Collins C, Zaas AK, Schell WA, Betancourt-Quiroz M, et al. (2010) PKC Signaling Regulates Drug Resistance of the Fungal Pathogen Candida albicans via Circuitry Comprised of Mkc1, Calcineurin, and Hsp90. PLoS Pathog 6(8): e1001069. doi:10.1371/journal.ppat.1001069</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c730t-928b0b823b649868b44f148bfcd8f71ecbb39ac16fd6054b4e34705c85f6ee253</citedby><cites>FETCH-LOGICAL-c730t-928b0b823b649868b44f148bfcd8f71ecbb39ac16fd6054b4e34705c85f6ee253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2928802/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2928802/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53770,53772,79347,79348</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20865172$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Mitchell, Aaron P.</contributor><creatorcontrib>LaFayette, Shantelle L</creatorcontrib><creatorcontrib>Collins, Cathy</creatorcontrib><creatorcontrib>Zaas, Aimee K</creatorcontrib><creatorcontrib>Schell, Wiley A</creatorcontrib><creatorcontrib>Betancourt-Quiroz, Marisol</creatorcontrib><creatorcontrib>Gunatilaka, A A Leslie</creatorcontrib><creatorcontrib>Perfect, John R</creatorcontrib><creatorcontrib>Cowen, Leah E</creatorcontrib><title>PKC signaling regulates drug resistance of the fungal pathogen Candida albicans via circuitry comprised of Mkc1, calcineurin, and Hsp90</title><title>PLoS pathogens</title><addtitle>PLoS Pathog</addtitle><description>Fungal pathogens exploit diverse mechanisms to survive exposure to antifungal drugs. This poses concern given the limited number of clinically useful antifungals and the growing population of immunocompromised individuals vulnerable to life-threatening fungal infection. To identify molecules that abrogate resistance to the most widely deployed class of antifungals, the azoles, we conducted a screen of 1,280 pharmacologically active compounds. Three out of seven hits that abolished azole resistance of a resistant mutant of the model yeast Saccharomyces cerevisiae and a clinical isolate of the leading human fungal pathogen Candida albicans were inhibitors of protein kinase C (PKC), which regulates cell wall integrity during growth, morphogenesis, and response to cell wall stress. Pharmacological or genetic impairment of Pkc1 conferred hypersensitivity to multiple drugs that target synthesis of the key cell membrane sterol ergosterol, including azoles, allylamines, and morpholines. Pkc1 enabled survival of cell membrane stress at least in part via the mitogen activated protein kinase (MAPK) cascade in both species, though through distinct downstream effectors. Strikingly, inhibition of Pkc1 phenocopied inhibition of the molecular chaperone Hsp90 or its client protein calcineurin. PKC signaling was required for calcineurin activation in response to drug exposure in S. cerevisiae. In contrast, Pkc1 and calcineurin independently regulate drug resistance via a common target in C. albicans. We identified an additional level of regulatory control in the C. albicans circuitry linking PKC signaling, Hsp90, and calcineurin as genetic reduction of Hsp90 led to depletion of the terminal MAPK, Mkc1. Deletion of C. albicans PKC1 rendered fungistatic ergosterol biosynthesis inhibitors fungicidal and attenuated virulence in a murine model of systemic candidiasis. This work establishes a new role for PKC signaling in drug resistance, novel circuitry through which Hsp90 regulates drug resistance, and that targeting stress response signaling provides a promising strategy for treating life-threatening fungal infections.</description><subject>Animals</subject><subject>Antifungal Agents - pharmacology</subject><subject>Calcineurin</subject><subject>Calcineurin - genetics</subject><subject>Calcineurin - metabolism</subject><subject>Candida albicans</subject><subject>Candida albicans - genetics</subject><subject>Candida albicans - metabolism</subject><subject>Drug resistance in microorganisms</subject><subject>Drug Resistance, Fungal - genetics</subject><subject>Fungal Proteins - genetics</subject><subject>Fungal Proteins - metabolism</subject><subject>Fungi</subject><subject>Heat shock proteins</subject><subject>HSP90 Heat-Shock Proteins - genetics</subject><subject>HSP90 Heat-Shock Proteins - metabolism</subject><subject>Immunoblotting</subject><subject>Infectious Diseases/Antimicrobials and Drug Resistance</subject><subject>Infectious Diseases/Fungal Infections</subject><subject>Kinases</subject><subject>Medical research</subject><subject>Mice</subject><subject>Microbial Sensitivity Tests</subject><subject>Mitogen-Activated Protein Kinases - genetics</subject><subject>Mitogen-Activated Protein Kinases - metabolism</subject><subject>Mortality</subject><subject>Physiological aspects</subject><subject>Protein Kinase C - metabolism</subject><subject>Protein kinases</subject><subject>Proteins</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Signal Transduction - physiology</subject><issn>1553-7374</issn><issn>1553-7366</issn><issn>1553-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVk12L1DAUhoso7rr6D0QDXoiwM-arSXojLIO6g-sHflyHJE06GTvJmLSL-wv826bO7LIDgkgv0p4873uac3Kq6jGCc0Q4ermOYwqqn2-3apgjCBFkzZ3qGNU1mXHC6d1b70fVg5zXEFJEELtfHWEoWI04Pq5-fXq3ANl3xcmHDiTbjb0abAZtGqfP7POggrEgOjCsLHBj6FQPSs5V7GwACxVa3yqgeu2NChlcegWMT2b0Q7oCJm62yWfbTvr33w06BUb1xgc7Jh9OQVGD87xt4MPqnlN9to_260n17c3rr4vz2cXHt8vF2cXMcAKHWYOFhlpgohltBBOaUoeo0M60wnFkjdakUQYx1zJYU00toRzWRtSOWYtrclI93flu-5jlvoZZIiwahDHFsBDLHdFGtZbl7zcqXcmovPwTiKmTKg3e9FZSRZyCvIbUMapbJEpew1rSNlohZFXxerXPNuqNbY0NQ1L9genhTvAr2cVLictBBcTF4PneIMUfo82D3PhsbN-rYOOYZYMEJLxGzT9JXpeGC8En8tmOLI200gcXS2oz0fIME8ZxwzAq1PwvVHlau_EmBut8iR8IXhwICjPYn0Onxpzl8svn_2A_HLJ0x5oUc07W3ZQPQTlNwnUX5TQJcj8JRfbkdulvRNdXn_wGS-0FYw</recordid><startdate>20100801</startdate><enddate>20100801</enddate><creator>LaFayette, Shantelle L</creator><creator>Collins, Cathy</creator><creator>Zaas, Aimee K</creator><creator>Schell, Wiley A</creator><creator>Betancourt-Quiroz, Marisol</creator><creator>Gunatilaka, A A Leslie</creator><creator>Perfect, John R</creator><creator>Cowen, Leah E</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>M7N</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20100801</creationdate><title>PKC signaling regulates drug resistance of the fungal pathogen Candida albicans via circuitry comprised of Mkc1, calcineurin, and Hsp90</title><author>LaFayette, Shantelle L ; Collins, Cathy ; Zaas, Aimee K ; Schell, Wiley A ; Betancourt-Quiroz, Marisol ; Gunatilaka, A A Leslie ; Perfect, John R ; Cowen, Leah E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c730t-928b0b823b649868b44f148bfcd8f71ecbb39ac16fd6054b4e34705c85f6ee253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>Antifungal Agents - pharmacology</topic><topic>Calcineurin</topic><topic>Calcineurin - genetics</topic><topic>Calcineurin - metabolism</topic><topic>Candida albicans</topic><topic>Candida albicans - genetics</topic><topic>Candida albicans - metabolism</topic><topic>Drug resistance in microorganisms</topic><topic>Drug Resistance, Fungal - genetics</topic><topic>Fungal Proteins - genetics</topic><topic>Fungal Proteins - metabolism</topic><topic>Fungi</topic><topic>Heat shock proteins</topic><topic>HSP90 Heat-Shock Proteins - genetics</topic><topic>HSP90 Heat-Shock Proteins - metabolism</topic><topic>Immunoblotting</topic><topic>Infectious Diseases/Antimicrobials and Drug Resistance</topic><topic>Infectious Diseases/Fungal Infections</topic><topic>Kinases</topic><topic>Medical research</topic><topic>Mice</topic><topic>Microbial Sensitivity Tests</topic><topic>Mitogen-Activated Protein Kinases - genetics</topic><topic>Mitogen-Activated Protein Kinases - metabolism</topic><topic>Mortality</topic><topic>Physiological aspects</topic><topic>Protein Kinase C - metabolism</topic><topic>Protein kinases</topic><topic>Proteins</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Signal Transduction - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LaFayette, Shantelle L</creatorcontrib><creatorcontrib>Collins, Cathy</creatorcontrib><creatorcontrib>Zaas, Aimee K</creatorcontrib><creatorcontrib>Schell, Wiley A</creatorcontrib><creatorcontrib>Betancourt-Quiroz, Marisol</creatorcontrib><creatorcontrib>Gunatilaka, A A Leslie</creatorcontrib><creatorcontrib>Perfect, John R</creatorcontrib><creatorcontrib>Cowen, Leah E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS pathogens</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LaFayette, Shantelle L</au><au>Collins, Cathy</au><au>Zaas, Aimee K</au><au>Schell, Wiley A</au><au>Betancourt-Quiroz, Marisol</au><au>Gunatilaka, A A Leslie</au><au>Perfect, John R</au><au>Cowen, Leah E</au><au>Mitchell, Aaron P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PKC signaling regulates drug resistance of the fungal pathogen Candida albicans via circuitry comprised of Mkc1, calcineurin, and Hsp90</atitle><jtitle>PLoS pathogens</jtitle><addtitle>PLoS Pathog</addtitle><date>2010-08-01</date><risdate>2010</risdate><volume>6</volume><issue>8</issue><spage>e1001069</spage><epage>e1001069</epage><pages>e1001069-e1001069</pages><issn>1553-7374</issn><issn>1553-7366</issn><eissn>1553-7374</eissn><abstract>Fungal pathogens exploit diverse mechanisms to survive exposure to antifungal drugs. This poses concern given the limited number of clinically useful antifungals and the growing population of immunocompromised individuals vulnerable to life-threatening fungal infection. To identify molecules that abrogate resistance to the most widely deployed class of antifungals, the azoles, we conducted a screen of 1,280 pharmacologically active compounds. Three out of seven hits that abolished azole resistance of a resistant mutant of the model yeast Saccharomyces cerevisiae and a clinical isolate of the leading human fungal pathogen Candida albicans were inhibitors of protein kinase C (PKC), which regulates cell wall integrity during growth, morphogenesis, and response to cell wall stress. Pharmacological or genetic impairment of Pkc1 conferred hypersensitivity to multiple drugs that target synthesis of the key cell membrane sterol ergosterol, including azoles, allylamines, and morpholines. Pkc1 enabled survival of cell membrane stress at least in part via the mitogen activated protein kinase (MAPK) cascade in both species, though through distinct downstream effectors. Strikingly, inhibition of Pkc1 phenocopied inhibition of the molecular chaperone Hsp90 or its client protein calcineurin. PKC signaling was required for calcineurin activation in response to drug exposure in S. cerevisiae. In contrast, Pkc1 and calcineurin independently regulate drug resistance via a common target in C. albicans. We identified an additional level of regulatory control in the C. albicans circuitry linking PKC signaling, Hsp90, and calcineurin as genetic reduction of Hsp90 led to depletion of the terminal MAPK, Mkc1. Deletion of C. albicans PKC1 rendered fungistatic ergosterol biosynthesis inhibitors fungicidal and attenuated virulence in a murine model of systemic candidiasis. This work establishes a new role for PKC signaling in drug resistance, novel circuitry through which Hsp90 regulates drug resistance, and that targeting stress response signaling provides a promising strategy for treating life-threatening fungal infections.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>20865172</pmid><doi>10.1371/journal.ppat.1001069</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7374 |
ispartof | PLoS pathogens, 2010-08, Vol.6 (8), p.e1001069-e1001069 |
issn | 1553-7374 1553-7366 1553-7374 |
language | eng |
recordid | cdi_plos_journals_1289122420 |
source | MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central Open Access; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Animals Antifungal Agents - pharmacology Calcineurin Calcineurin - genetics Calcineurin - metabolism Candida albicans Candida albicans - genetics Candida albicans - metabolism Drug resistance in microorganisms Drug Resistance, Fungal - genetics Fungal Proteins - genetics Fungal Proteins - metabolism Fungi Heat shock proteins HSP90 Heat-Shock Proteins - genetics HSP90 Heat-Shock Proteins - metabolism Immunoblotting Infectious Diseases/Antimicrobials and Drug Resistance Infectious Diseases/Fungal Infections Kinases Medical research Mice Microbial Sensitivity Tests Mitogen-Activated Protein Kinases - genetics Mitogen-Activated Protein Kinases - metabolism Mortality Physiological aspects Protein Kinase C - metabolism Protein kinases Proteins Reverse Transcriptase Polymerase Chain Reaction Saccharomyces cerevisiae Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Signal Transduction - physiology |
title | PKC signaling regulates drug resistance of the fungal pathogen Candida albicans via circuitry comprised of Mkc1, calcineurin, and Hsp90 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T07%3A54%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PKC%20signaling%20regulates%20drug%20resistance%20of%20the%20fungal%20pathogen%20Candida%20albicans%20via%20circuitry%20comprised%20of%20Mkc1,%20calcineurin,%20and%20Hsp90&rft.jtitle=PLoS%20pathogens&rft.au=LaFayette,%20Shantelle%20L&rft.date=2010-08-01&rft.volume=6&rft.issue=8&rft.spage=e1001069&rft.epage=e1001069&rft.pages=e1001069-e1001069&rft.issn=1553-7374&rft.eissn=1553-7374&rft_id=info:doi/10.1371/journal.ppat.1001069&rft_dat=%3Cgale_plos_%3EA236729621%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=755178879&rft_id=info:pmid/20865172&rft_galeid=A236729621&rft_doaj_id=oai_doaj_org_article_4a3fa07504f64bd1816fc6d3d9ba11ea&rfr_iscdi=true |