Structural basis for the ABO blood-group dependence of Plasmodium falciparum rosetting
The ABO blood group influences susceptibility to severe Plasmodium falciparum malaria. Recent evidence indicates that the protective effect of group O operates by virtue of reduced rosetting of infected red blood cells (iRBCs) with uninfected RBCs. Rosetting is mediated by a subgroup of PfEMP1 adhes...
Gespeichert in:
Veröffentlicht in: | PLoS pathogens 2012-07, Vol.8 (7), p.e1002781 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | e1002781 |
container_title | PLoS pathogens |
container_volume | 8 |
creator | Vigan-Womas, Inès Guillotte, Micheline Juillerat, Alexandre Hessel, Audrey Raynal, Bertrand England, Patrick Cohen, Jacques H Bertrand, Olivier Peyrard, Thierry Bentley, Graham A Lewit-Bentley, Anita Mercereau-Puijalon, Odile |
description | The ABO blood group influences susceptibility to severe Plasmodium falciparum malaria. Recent evidence indicates that the protective effect of group O operates by virtue of reduced rosetting of infected red blood cells (iRBCs) with uninfected RBCs. Rosetting is mediated by a subgroup of PfEMP1 adhesins, with RBC binding being assigned to the N-terminal DBL1α₁ domain. Here, we identify the ABO blood group as the main receptor for VarO rosetting, with a marked preference for group A over group B, which in turn is preferred to group O RBCs. We show that recombinant NTS-DBL1α₁ and NTS-DBL1α₁-CIDR1γ reproduce the VarO-iRBC blood group preference and document direct binding to blood group trisaccharides by surface plasmon resonance. More detailed RBC subgroup analysis showed preferred binding to group A₁, weaker binding to groups A₂ and B, and least binding to groups A(x) and O. The 2.8 Å resolution crystal structure of the PfEMP1-VarO Head region, NTS-DBL1α₁-CIDR1γ, reveals extensive contacts between the DBL1α₁ and CIDR1γ and shows that the NTS-DBL1α₁ hinge region is essential for RBC binding. Computer docking of the blood group trisaccharides and subsequent site-directed mutagenesis localized the RBC-binding site to the face opposite to the heparin-binding site of NTS-DBLα₁. RBC binding involves residues that are conserved between rosette-forming PfEMP1 adhesins, opening novel opportunities for intervention against severe malaria. By deciphering the structural basis of blood group preferences in rosetting, we provide a link between ABO blood grouppolymorphisms and rosette-forming adhesins, consistent with the selective role of falciparum malaria on human genetic makeup. |
doi_str_mv | 10.1371/journal.ppat.1002781 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1289115195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A304466728</galeid><doaj_id>oai_doaj_org_article_d0409c6651fb4a2d9ca02f49988aadf0</doaj_id><sourcerecordid>A304466728</sourcerecordid><originalsourceid>FETCH-LOGICAL-c695t-b094185cebac0b6715aabc77e22234c5045e8ce780c29b1934242ee7098072673</originalsourceid><addsrcrecordid>eNqVkk1v1DAQhiMEoqXwDxBE4tTDLv6M4wvSUgFdaUURBa6W40yyXiVxsJ0K_j1eNq26CA7IB1vj553xjN8se47RElOBX-_c5AfdLcdRxyVGiIgSP8hOMed0IahgD--dT7InIewQYpji4nF2QkiJRCHYafbtOvrJxMnrLq90sCFvnM_jFvLV26u86pyrF61305jXMMJQw2Agd03-qdOhd7Wd-rzRnbGj9unoXYAY7dA-zR6lcIBn836WfX3_7svF5WJz9WF9sdosTCF5XFRIMlxyA5U2qCoE5lpXRggghFBmOGIcSgOiRIbICkvKCCMAAsn0flIIepa9POQdOxfUPJKgMCklxhxLnoj1gaid3qnR2177n8ppq34HnG-V9tGaDlSNGJKmKDhuKqZJLY1GpGFSlqXWdYNSrjdztanqoTYwxDS3o6THN4PdqtbdKEol53L_3PNDgu0fssvVRu1jiMj0txLf4MS-mot5932CEP_R3ky1OnVgh8alwqa3wagVRYwVhSBlopZ_odKqobfGDdDYFD8SnB8JEhPhR2z1FIJaX3_-D_bjMcsOrElWCR6auylgpPa2vm1S7W2tZlsn2Yv7g78T3fqY_gLcBPHK</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1289115195</pqid></control><display><type>article</type><title>Structural basis for the ABO blood-group dependence of Plasmodium falciparum rosetting</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Vigan-Womas, Inès ; Guillotte, Micheline ; Juillerat, Alexandre ; Hessel, Audrey ; Raynal, Bertrand ; England, Patrick ; Cohen, Jacques H ; Bertrand, Olivier ; Peyrard, Thierry ; Bentley, Graham A ; Lewit-Bentley, Anita ; Mercereau-Puijalon, Odile</creator><contributor>Rowe, J. Alexandra</contributor><creatorcontrib>Vigan-Womas, Inès ; Guillotte, Micheline ; Juillerat, Alexandre ; Hessel, Audrey ; Raynal, Bertrand ; England, Patrick ; Cohen, Jacques H ; Bertrand, Olivier ; Peyrard, Thierry ; Bentley, Graham A ; Lewit-Bentley, Anita ; Mercereau-Puijalon, Odile ; Rowe, J. Alexandra</creatorcontrib><description>The ABO blood group influences susceptibility to severe Plasmodium falciparum malaria. Recent evidence indicates that the protective effect of group O operates by virtue of reduced rosetting of infected red blood cells (iRBCs) with uninfected RBCs. Rosetting is mediated by a subgroup of PfEMP1 adhesins, with RBC binding being assigned to the N-terminal DBL1α₁ domain. Here, we identify the ABO blood group as the main receptor for VarO rosetting, with a marked preference for group A over group B, which in turn is preferred to group O RBCs. We show that recombinant NTS-DBL1α₁ and NTS-DBL1α₁-CIDR1γ reproduce the VarO-iRBC blood group preference and document direct binding to blood group trisaccharides by surface plasmon resonance. More detailed RBC subgroup analysis showed preferred binding to group A₁, weaker binding to groups A₂ and B, and least binding to groups A(x) and O. The 2.8 Å resolution crystal structure of the PfEMP1-VarO Head region, NTS-DBL1α₁-CIDR1γ, reveals extensive contacts between the DBL1α₁ and CIDR1γ and shows that the NTS-DBL1α₁ hinge region is essential for RBC binding. Computer docking of the blood group trisaccharides and subsequent site-directed mutagenesis localized the RBC-binding site to the face opposite to the heparin-binding site of NTS-DBLα₁. RBC binding involves residues that are conserved between rosette-forming PfEMP1 adhesins, opening novel opportunities for intervention against severe malaria. By deciphering the structural basis of blood group preferences in rosetting, we provide a link between ABO blood grouppolymorphisms and rosette-forming adhesins, consistent with the selective role of falciparum malaria on human genetic makeup.</description><identifier>ISSN: 1553-7374</identifier><identifier>ISSN: 1553-7366</identifier><identifier>EISSN: 1553-7374</identifier><identifier>DOI: 10.1371/journal.ppat.1002781</identifier><identifier>PMID: 22807674</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>ABO Blood-Group System - immunology ; ABO Blood-Group System - metabolism ; Amino Acid Sequence ; Antibodies, Protozoan - immunology ; Binding Sites ; Biochemistry, Molecular Biology ; Biology ; Blood ; Blood groups ; Cellular Biology ; Crystal structure ; Crystallography, X-Ray ; Erythrocytes ; Erythrocytes - immunology ; Erythrocytes - metabolism ; Human genetics ; Humans ; Immune Adherence Reaction ; Immunology ; Life Sciences ; Malaria ; Malaria, Falciparum - blood ; Malaria, Falciparum - immunology ; Malaria, Falciparum - parasitology ; Materials Science ; Microbiology and Parasitology ; Molecular biology ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Observations ; Parasites ; Physics ; Plasmodium falciparum ; Plasmodium falciparum - genetics ; Plasmodium falciparum - metabolism ; Plasmodium falciparum - ultrastructure ; Properties ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Proteins ; Protozoan Proteins - chemistry ; Protozoan Proteins - genetics ; Protozoan Proteins - immunology ; Protozoan Proteins - metabolism ; Rosette Formation ; Santé publique et épidémiologie ; Vector-borne diseases</subject><ispartof>PLoS pathogens, 2012-07, Vol.8 (7), p.e1002781</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Vigan-Womas et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Vigan-Womas I, Guillotte M, Juillerat A, Hessel A, Raynal B, et al. (2012) Structural Basis for the ABO Blood-Group Dependence of Plasmodium falciparum Rosetting. PLoS Pathog 8(7): e1002781. doi:10.1371/journal.ppat.1002781</rights><rights>Attribution</rights><rights>Vigan-Womas et al. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c695t-b094185cebac0b6715aabc77e22234c5045e8ce780c29b1934242ee7098072673</citedby><cites>FETCH-LOGICAL-c695t-b094185cebac0b6715aabc77e22234c5045e8ce780c29b1934242ee7098072673</cites><orcidid>0000-0002-7715-568X ; 0000-0001-5634-0408 ; 0000-0002-0376-997X ; 0000-0001-7848-9297 ; 0000-0001-6410-5918</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3395597/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3395597/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22807674$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02937191$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Rowe, J. Alexandra</contributor><creatorcontrib>Vigan-Womas, Inès</creatorcontrib><creatorcontrib>Guillotte, Micheline</creatorcontrib><creatorcontrib>Juillerat, Alexandre</creatorcontrib><creatorcontrib>Hessel, Audrey</creatorcontrib><creatorcontrib>Raynal, Bertrand</creatorcontrib><creatorcontrib>England, Patrick</creatorcontrib><creatorcontrib>Cohen, Jacques H</creatorcontrib><creatorcontrib>Bertrand, Olivier</creatorcontrib><creatorcontrib>Peyrard, Thierry</creatorcontrib><creatorcontrib>Bentley, Graham A</creatorcontrib><creatorcontrib>Lewit-Bentley, Anita</creatorcontrib><creatorcontrib>Mercereau-Puijalon, Odile</creatorcontrib><title>Structural basis for the ABO blood-group dependence of Plasmodium falciparum rosetting</title><title>PLoS pathogens</title><addtitle>PLoS Pathog</addtitle><description>The ABO blood group influences susceptibility to severe Plasmodium falciparum malaria. Recent evidence indicates that the protective effect of group O operates by virtue of reduced rosetting of infected red blood cells (iRBCs) with uninfected RBCs. Rosetting is mediated by a subgroup of PfEMP1 adhesins, with RBC binding being assigned to the N-terminal DBL1α₁ domain. Here, we identify the ABO blood group as the main receptor for VarO rosetting, with a marked preference for group A over group B, which in turn is preferred to group O RBCs. We show that recombinant NTS-DBL1α₁ and NTS-DBL1α₁-CIDR1γ reproduce the VarO-iRBC blood group preference and document direct binding to blood group trisaccharides by surface plasmon resonance. More detailed RBC subgroup analysis showed preferred binding to group A₁, weaker binding to groups A₂ and B, and least binding to groups A(x) and O. The 2.8 Å resolution crystal structure of the PfEMP1-VarO Head region, NTS-DBL1α₁-CIDR1γ, reveals extensive contacts between the DBL1α₁ and CIDR1γ and shows that the NTS-DBL1α₁ hinge region is essential for RBC binding. Computer docking of the blood group trisaccharides and subsequent site-directed mutagenesis localized the RBC-binding site to the face opposite to the heparin-binding site of NTS-DBLα₁. RBC binding involves residues that are conserved between rosette-forming PfEMP1 adhesins, opening novel opportunities for intervention against severe malaria. By deciphering the structural basis of blood group preferences in rosetting, we provide a link between ABO blood grouppolymorphisms and rosette-forming adhesins, consistent with the selective role of falciparum malaria on human genetic makeup.</description><subject>ABO Blood-Group System - immunology</subject><subject>ABO Blood-Group System - metabolism</subject><subject>Amino Acid Sequence</subject><subject>Antibodies, Protozoan - immunology</subject><subject>Binding Sites</subject><subject>Biochemistry, Molecular Biology</subject><subject>Biology</subject><subject>Blood</subject><subject>Blood groups</subject><subject>Cellular Biology</subject><subject>Crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>Erythrocytes</subject><subject>Erythrocytes - immunology</subject><subject>Erythrocytes - metabolism</subject><subject>Human genetics</subject><subject>Humans</subject><subject>Immune Adherence Reaction</subject><subject>Immunology</subject><subject>Life Sciences</subject><subject>Malaria</subject><subject>Malaria, Falciparum - blood</subject><subject>Malaria, Falciparum - immunology</subject><subject>Malaria, Falciparum - parasitology</subject><subject>Materials Science</subject><subject>Microbiology and Parasitology</subject><subject>Molecular biology</subject><subject>Molecular Sequence Data</subject><subject>Mutagenesis, Site-Directed</subject><subject>Observations</subject><subject>Parasites</subject><subject>Physics</subject><subject>Plasmodium falciparum</subject><subject>Plasmodium falciparum - genetics</subject><subject>Plasmodium falciparum - metabolism</subject><subject>Plasmodium falciparum - ultrastructure</subject><subject>Properties</subject><subject>Protein Structure, Secondary</subject><subject>Protein Structure, Tertiary</subject><subject>Proteins</subject><subject>Protozoan Proteins - chemistry</subject><subject>Protozoan Proteins - genetics</subject><subject>Protozoan Proteins - immunology</subject><subject>Protozoan Proteins - metabolism</subject><subject>Rosette Formation</subject><subject>Santé publique et épidémiologie</subject><subject>Vector-borne diseases</subject><issn>1553-7374</issn><issn>1553-7366</issn><issn>1553-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVkk1v1DAQhiMEoqXwDxBE4tTDLv6M4wvSUgFdaUURBa6W40yyXiVxsJ0K_j1eNq26CA7IB1vj553xjN8se47RElOBX-_c5AfdLcdRxyVGiIgSP8hOMed0IahgD--dT7InIewQYpji4nF2QkiJRCHYafbtOvrJxMnrLq90sCFvnM_jFvLV26u86pyrF61305jXMMJQw2Agd03-qdOhd7Wd-rzRnbGj9unoXYAY7dA-zR6lcIBn836WfX3_7svF5WJz9WF9sdosTCF5XFRIMlxyA5U2qCoE5lpXRggghFBmOGIcSgOiRIbICkvKCCMAAsn0flIIepa9POQdOxfUPJKgMCklxhxLnoj1gaid3qnR2177n8ppq34HnG-V9tGaDlSNGJKmKDhuKqZJLY1GpGFSlqXWdYNSrjdztanqoTYwxDS3o6THN4PdqtbdKEol53L_3PNDgu0fssvVRu1jiMj0txLf4MS-mot5932CEP_R3ky1OnVgh8alwqa3wagVRYwVhSBlopZ_odKqobfGDdDYFD8SnB8JEhPhR2z1FIJaX3_-D_bjMcsOrElWCR6auylgpPa2vm1S7W2tZlsn2Yv7g78T3fqY_gLcBPHK</recordid><startdate>20120701</startdate><enddate>20120701</enddate><creator>Vigan-Womas, Inès</creator><creator>Guillotte, Micheline</creator><creator>Juillerat, Alexandre</creator><creator>Hessel, Audrey</creator><creator>Raynal, Bertrand</creator><creator>England, Patrick</creator><creator>Cohen, Jacques H</creator><creator>Bertrand, Olivier</creator><creator>Peyrard, Thierry</creator><creator>Bentley, Graham A</creator><creator>Lewit-Bentley, Anita</creator><creator>Mercereau-Puijalon, Odile</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>1XC</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7715-568X</orcidid><orcidid>https://orcid.org/0000-0001-5634-0408</orcidid><orcidid>https://orcid.org/0000-0002-0376-997X</orcidid><orcidid>https://orcid.org/0000-0001-7848-9297</orcidid><orcidid>https://orcid.org/0000-0001-6410-5918</orcidid></search><sort><creationdate>20120701</creationdate><title>Structural basis for the ABO blood-group dependence of Plasmodium falciparum rosetting</title><author>Vigan-Womas, Inès ; Guillotte, Micheline ; Juillerat, Alexandre ; Hessel, Audrey ; Raynal, Bertrand ; England, Patrick ; Cohen, Jacques H ; Bertrand, Olivier ; Peyrard, Thierry ; Bentley, Graham A ; Lewit-Bentley, Anita ; Mercereau-Puijalon, Odile</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c695t-b094185cebac0b6715aabc77e22234c5045e8ce780c29b1934242ee7098072673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>ABO Blood-Group System - immunology</topic><topic>ABO Blood-Group System - metabolism</topic><topic>Amino Acid Sequence</topic><topic>Antibodies, Protozoan - immunology</topic><topic>Binding Sites</topic><topic>Biochemistry, Molecular Biology</topic><topic>Biology</topic><topic>Blood</topic><topic>Blood groups</topic><topic>Cellular Biology</topic><topic>Crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>Erythrocytes</topic><topic>Erythrocytes - immunology</topic><topic>Erythrocytes - metabolism</topic><topic>Human genetics</topic><topic>Humans</topic><topic>Immune Adherence Reaction</topic><topic>Immunology</topic><topic>Life Sciences</topic><topic>Malaria</topic><topic>Malaria, Falciparum - blood</topic><topic>Malaria, Falciparum - immunology</topic><topic>Malaria, Falciparum - parasitology</topic><topic>Materials Science</topic><topic>Microbiology and Parasitology</topic><topic>Molecular biology</topic><topic>Molecular Sequence Data</topic><topic>Mutagenesis, Site-Directed</topic><topic>Observations</topic><topic>Parasites</topic><topic>Physics</topic><topic>Plasmodium falciparum</topic><topic>Plasmodium falciparum - genetics</topic><topic>Plasmodium falciparum - metabolism</topic><topic>Plasmodium falciparum - ultrastructure</topic><topic>Properties</topic><topic>Protein Structure, Secondary</topic><topic>Protein Structure, Tertiary</topic><topic>Proteins</topic><topic>Protozoan Proteins - chemistry</topic><topic>Protozoan Proteins - genetics</topic><topic>Protozoan Proteins - immunology</topic><topic>Protozoan Proteins - metabolism</topic><topic>Rosette Formation</topic><topic>Santé publique et épidémiologie</topic><topic>Vector-borne diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vigan-Womas, Inès</creatorcontrib><creatorcontrib>Guillotte, Micheline</creatorcontrib><creatorcontrib>Juillerat, Alexandre</creatorcontrib><creatorcontrib>Hessel, Audrey</creatorcontrib><creatorcontrib>Raynal, Bertrand</creatorcontrib><creatorcontrib>England, Patrick</creatorcontrib><creatorcontrib>Cohen, Jacques H</creatorcontrib><creatorcontrib>Bertrand, Olivier</creatorcontrib><creatorcontrib>Peyrard, Thierry</creatorcontrib><creatorcontrib>Bentley, Graham A</creatorcontrib><creatorcontrib>Lewit-Bentley, Anita</creatorcontrib><creatorcontrib>Mercereau-Puijalon, Odile</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS pathogens</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vigan-Womas, Inès</au><au>Guillotte, Micheline</au><au>Juillerat, Alexandre</au><au>Hessel, Audrey</au><au>Raynal, Bertrand</au><au>England, Patrick</au><au>Cohen, Jacques H</au><au>Bertrand, Olivier</au><au>Peyrard, Thierry</au><au>Bentley, Graham A</au><au>Lewit-Bentley, Anita</au><au>Mercereau-Puijalon, Odile</au><au>Rowe, J. Alexandra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural basis for the ABO blood-group dependence of Plasmodium falciparum rosetting</atitle><jtitle>PLoS pathogens</jtitle><addtitle>PLoS Pathog</addtitle><date>2012-07-01</date><risdate>2012</risdate><volume>8</volume><issue>7</issue><spage>e1002781</spage><pages>e1002781-</pages><issn>1553-7374</issn><issn>1553-7366</issn><eissn>1553-7374</eissn><abstract>The ABO blood group influences susceptibility to severe Plasmodium falciparum malaria. Recent evidence indicates that the protective effect of group O operates by virtue of reduced rosetting of infected red blood cells (iRBCs) with uninfected RBCs. Rosetting is mediated by a subgroup of PfEMP1 adhesins, with RBC binding being assigned to the N-terminal DBL1α₁ domain. Here, we identify the ABO blood group as the main receptor for VarO rosetting, with a marked preference for group A over group B, which in turn is preferred to group O RBCs. We show that recombinant NTS-DBL1α₁ and NTS-DBL1α₁-CIDR1γ reproduce the VarO-iRBC blood group preference and document direct binding to blood group trisaccharides by surface plasmon resonance. More detailed RBC subgroup analysis showed preferred binding to group A₁, weaker binding to groups A₂ and B, and least binding to groups A(x) and O. The 2.8 Å resolution crystal structure of the PfEMP1-VarO Head region, NTS-DBL1α₁-CIDR1γ, reveals extensive contacts between the DBL1α₁ and CIDR1γ and shows that the NTS-DBL1α₁ hinge region is essential for RBC binding. Computer docking of the blood group trisaccharides and subsequent site-directed mutagenesis localized the RBC-binding site to the face opposite to the heparin-binding site of NTS-DBLα₁. RBC binding involves residues that are conserved between rosette-forming PfEMP1 adhesins, opening novel opportunities for intervention against severe malaria. By deciphering the structural basis of blood group preferences in rosetting, we provide a link between ABO blood grouppolymorphisms and rosette-forming adhesins, consistent with the selective role of falciparum malaria on human genetic makeup.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22807674</pmid><doi>10.1371/journal.ppat.1002781</doi><orcidid>https://orcid.org/0000-0002-7715-568X</orcidid><orcidid>https://orcid.org/0000-0001-5634-0408</orcidid><orcidid>https://orcid.org/0000-0002-0376-997X</orcidid><orcidid>https://orcid.org/0000-0001-7848-9297</orcidid><orcidid>https://orcid.org/0000-0001-6410-5918</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7374 |
ispartof | PLoS pathogens, 2012-07, Vol.8 (7), p.e1002781 |
issn | 1553-7374 1553-7366 1553-7374 |
language | eng |
recordid | cdi_plos_journals_1289115195 |
source | MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central Open Access; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | ABO Blood-Group System - immunology ABO Blood-Group System - metabolism Amino Acid Sequence Antibodies, Protozoan - immunology Binding Sites Biochemistry, Molecular Biology Biology Blood Blood groups Cellular Biology Crystal structure Crystallography, X-Ray Erythrocytes Erythrocytes - immunology Erythrocytes - metabolism Human genetics Humans Immune Adherence Reaction Immunology Life Sciences Malaria Malaria, Falciparum - blood Malaria, Falciparum - immunology Malaria, Falciparum - parasitology Materials Science Microbiology and Parasitology Molecular biology Molecular Sequence Data Mutagenesis, Site-Directed Observations Parasites Physics Plasmodium falciparum Plasmodium falciparum - genetics Plasmodium falciparum - metabolism Plasmodium falciparum - ultrastructure Properties Protein Structure, Secondary Protein Structure, Tertiary Proteins Protozoan Proteins - chemistry Protozoan Proteins - genetics Protozoan Proteins - immunology Protozoan Proteins - metabolism Rosette Formation Santé publique et épidémiologie Vector-borne diseases |
title | Structural basis for the ABO blood-group dependence of Plasmodium falciparum rosetting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A29%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20basis%20for%20the%20ABO%20blood-group%20dependence%20of%20Plasmodium%20falciparum%20rosetting&rft.jtitle=PLoS%20pathogens&rft.au=Vigan-Womas,%20In%C3%A8s&rft.date=2012-07-01&rft.volume=8&rft.issue=7&rft.spage=e1002781&rft.pages=e1002781-&rft.issn=1553-7374&rft.eissn=1553-7374&rft_id=info:doi/10.1371/journal.ppat.1002781&rft_dat=%3Cgale_plos_%3EA304466728%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1289115195&rft_id=info:pmid/22807674&rft_galeid=A304466728&rft_doaj_id=oai_doaj_org_article_d0409c6651fb4a2d9ca02f49988aadf0&rfr_iscdi=true |