Species-specific inhibition of RIG-I ubiquitination and IFN induction by the influenza A virus NS1 protein
Influenza A viruses can adapt to new host species, leading to the emergence of novel pathogenic strains. There is evidence that highly pathogenic viruses encode for non-structural 1 (NS1) proteins that are more efficient in suppressing the host immune response. The NS1 protein inhibits type-I interf...
Gespeichert in:
Veröffentlicht in: | PLoS pathogens 2012-11, Vol.8 (11), p.e1003059-e1003059 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1003059 |
---|---|
container_issue | 11 |
container_start_page | e1003059 |
container_title | PLoS pathogens |
container_volume | 8 |
creator | Rajsbaum, Ricardo Albrecht, Randy A Wang, May K Maharaj, Natalya P Versteeg, Gijs A Nistal-Villán, Estanislao García-Sastre, Adolfo Gack, Michaela U |
description | Influenza A viruses can adapt to new host species, leading to the emergence of novel pathogenic strains. There is evidence that highly pathogenic viruses encode for non-structural 1 (NS1) proteins that are more efficient in suppressing the host immune response. The NS1 protein inhibits type-I interferon (IFN) production partly by blocking the TRIM25 ubiquitin E3 ligase-mediated Lys63-linked ubiquitination of the viral RNA sensor RIG-I, required for its optimal downstream signaling. In order to understand possible mechanisms of viral adaptation and host tropism, we examined the ability of NS1 encoded by human (Cal04), avian (HK156), swine (SwTx98) and mouse-adapted (PR8) influenza viruses to interact with TRIM25 orthologues from mammalian and avian species. Using co-immunoprecipitation assays we show that human TRIM25 binds to all tested NS1 proteins, whereas the chicken TRIM25 ortholog binds preferentially to the NS1 from the avian virus. Strikingly, none of the NS1 proteins were able to bind mouse TRIM25. Since NS1 can inhibit IFN production in mouse, we tested the impact of TRIM25 and NS1 on RIG-I ubiquitination in mouse cells. While NS1 efficiently suppressed human TRIM25-dependent ubiquitination of RIG-I 2CARD, NS1 inhibited the ubiquitination of full-length mouse RIG-I in a mouse TRIM25-independent manner. Therefore, we tested if the ubiquitin E3 ligase Riplet, which has also been shown to ubiquitinate RIG-I, interacts with NS1. We found that NS1 binds mouse Riplet and inhibits its activity to induce IFN-β in murine cells. Furthermore, NS1 proteins of human but not swine or avian viruses were able to interact with human Riplet, thereby suppressing RIG-I ubiquitination. In conclusion, our results indicate that influenza NS1 protein targets TRIM25 and Riplet ubiquitin E3 ligases in a species-specific manner for the inhibition of RIG-I ubiquitination and antiviral IFN production. |
doi_str_mv | 10.1371/journal.ppat.1003059 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1289112477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A312105706</galeid><doaj_id>oai_doaj_org_article_68e798ffdedb4154898c30314604fbb4</doaj_id><sourcerecordid>A312105706</sourcerecordid><originalsourceid>FETCH-LOGICAL-c727t-c33c889b0238a2f1b7e9678372547f6135bbcae734d7655a00087763d2c040e83</originalsourceid><addsrcrecordid>eNqVkl1v0zAUhiMEYmPwDxBE4gYuUvwZJzeTqomNSFORVri2bMduXaV2ZicT49fjttm0ot1gX9h6_ZzXPscny95DMIOYwa8bPwYnulnfi2EGAcCA1i-yU0gpLhhm5OWT_Un2JsYNAARiWL7OThBGoCYInWabZa-V1bGIu9VYlVu3ttIO1rvcm_ymuSqafJT2dkyaE3tduDZvLhcJbUe1V-R9Pqx1Ekw3avdH5PP8zoYx5oslzPvgB23d2-yVEV3U76b1LPt1-e3nxffi-sdVczG_LhRDbCgUxqqqagkQrgQyUDJdl6zCDFHCTAkxlVIJzTBpWUmpAABUjJW4RQoQoCt8ln08-Padj3wqU-QQVTWEiDCWiOZAtF5seB_sVoR77oXle8GHFRdhsKrTvKw0qytjWt1KAimp6kphgCEpATFSkuR1Pt02yq1ulXZDEN2R6fGJs2u-8nccUwgQxcng82QQ_O2o48C3NirddcJpP-7enQamhKCEfvoHfT67iVqJlED6Ep_uVTtTPscQQUAZKBM1e4ZKs9Vbq7zTxib9KODLUUBiBv17WIkxRt4sb_6DXRyz5MCq4GMM2jzWDgK-6_SHJPmu0_nU6Snsw9O6PwY9tDb-C7kf9vM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1289112477</pqid></control><display><type>article</type><title>Species-specific inhibition of RIG-I ubiquitination and IFN induction by the influenza A virus NS1 protein</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><creator>Rajsbaum, Ricardo ; Albrecht, Randy A ; Wang, May K ; Maharaj, Natalya P ; Versteeg, Gijs A ; Nistal-Villán, Estanislao ; García-Sastre, Adolfo ; Gack, Michaela U</creator><contributor>Pekosz, Andrew</contributor><creatorcontrib>Rajsbaum, Ricardo ; Albrecht, Randy A ; Wang, May K ; Maharaj, Natalya P ; Versteeg, Gijs A ; Nistal-Villán, Estanislao ; García-Sastre, Adolfo ; Gack, Michaela U ; Pekosz, Andrew</creatorcontrib><description>Influenza A viruses can adapt to new host species, leading to the emergence of novel pathogenic strains. There is evidence that highly pathogenic viruses encode for non-structural 1 (NS1) proteins that are more efficient in suppressing the host immune response. The NS1 protein inhibits type-I interferon (IFN) production partly by blocking the TRIM25 ubiquitin E3 ligase-mediated Lys63-linked ubiquitination of the viral RNA sensor RIG-I, required for its optimal downstream signaling. In order to understand possible mechanisms of viral adaptation and host tropism, we examined the ability of NS1 encoded by human (Cal04), avian (HK156), swine (SwTx98) and mouse-adapted (PR8) influenza viruses to interact with TRIM25 orthologues from mammalian and avian species. Using co-immunoprecipitation assays we show that human TRIM25 binds to all tested NS1 proteins, whereas the chicken TRIM25 ortholog binds preferentially to the NS1 from the avian virus. Strikingly, none of the NS1 proteins were able to bind mouse TRIM25. Since NS1 can inhibit IFN production in mouse, we tested the impact of TRIM25 and NS1 on RIG-I ubiquitination in mouse cells. While NS1 efficiently suppressed human TRIM25-dependent ubiquitination of RIG-I 2CARD, NS1 inhibited the ubiquitination of full-length mouse RIG-I in a mouse TRIM25-independent manner. Therefore, we tested if the ubiquitin E3 ligase Riplet, which has also been shown to ubiquitinate RIG-I, interacts with NS1. We found that NS1 binds mouse Riplet and inhibits its activity to induce IFN-β in murine cells. Furthermore, NS1 proteins of human but not swine or avian viruses were able to interact with human Riplet, thereby suppressing RIG-I ubiquitination. In conclusion, our results indicate that influenza NS1 protein targets TRIM25 and Riplet ubiquitin E3 ligases in a species-specific manner for the inhibition of RIG-I ubiquitination and antiviral IFN production.</description><identifier>ISSN: 1553-7374</identifier><identifier>ISSN: 1553-7366</identifier><identifier>EISSN: 1553-7374</identifier><identifier>DOI: 10.1371/journal.ppat.1003059</identifier><identifier>PMID: 23209422</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Biology ; Chlorocebus aethiops ; DEAD Box Protein 58 ; DEAD-box RNA Helicases - genetics ; DEAD-box RNA Helicases - metabolism ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Dogs ; Health aspects ; HeLa Cells ; Hogs ; Humans ; Infections ; Influenza ; Influenza A virus - genetics ; Influenza A virus - metabolism ; Influenza viruses ; Influenza, Human - genetics ; Influenza, Human - metabolism ; Interferon ; Interferons - biosynthesis ; Interferons - genetics ; Medicine ; Mice ; Mice, Knockout ; Microscopy ; Physiological aspects ; Proteins ; Receptors, Immunologic ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Tripartite Motif Proteins ; Ubiquitin-proteasome system ; Ubiquitin-Protein Ligases - genetics ; Ubiquitin-Protein Ligases - metabolism ; Ubiquitination ; Vero Cells ; Viral Nonstructural Proteins - genetics ; Viral Nonstructural Proteins - metabolism ; Viral proteins ; Virulence (Microbiology) ; Viruses</subject><ispartof>PLoS pathogens, 2012-11, Vol.8 (11), p.e1003059-e1003059</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Rajsbaum et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Rajsbaum R, Albrecht RA, Wang MK, Maharaj NP, Versteeg GA, et al. (2012) Species-Specific Inhibition of RIG-I Ubiquitination and IFN Induction by the Influenza A Virus NS1 Protein. PLoS Pathog 8(11): e1003059. doi:10.1371/journal.ppat.1003059</rights><rights>2012 Rajsbaum et al 2012 Rajsbaum et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c727t-c33c889b0238a2f1b7e9678372547f6135bbcae734d7655a00087763d2c040e83</citedby><cites>FETCH-LOGICAL-c727t-c33c889b0238a2f1b7e9678372547f6135bbcae734d7655a00087763d2c040e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3510253/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3510253/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2929,23871,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23209422$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Pekosz, Andrew</contributor><creatorcontrib>Rajsbaum, Ricardo</creatorcontrib><creatorcontrib>Albrecht, Randy A</creatorcontrib><creatorcontrib>Wang, May K</creatorcontrib><creatorcontrib>Maharaj, Natalya P</creatorcontrib><creatorcontrib>Versteeg, Gijs A</creatorcontrib><creatorcontrib>Nistal-Villán, Estanislao</creatorcontrib><creatorcontrib>García-Sastre, Adolfo</creatorcontrib><creatorcontrib>Gack, Michaela U</creatorcontrib><title>Species-specific inhibition of RIG-I ubiquitination and IFN induction by the influenza A virus NS1 protein</title><title>PLoS pathogens</title><addtitle>PLoS Pathog</addtitle><description>Influenza A viruses can adapt to new host species, leading to the emergence of novel pathogenic strains. There is evidence that highly pathogenic viruses encode for non-structural 1 (NS1) proteins that are more efficient in suppressing the host immune response. The NS1 protein inhibits type-I interferon (IFN) production partly by blocking the TRIM25 ubiquitin E3 ligase-mediated Lys63-linked ubiquitination of the viral RNA sensor RIG-I, required for its optimal downstream signaling. In order to understand possible mechanisms of viral adaptation and host tropism, we examined the ability of NS1 encoded by human (Cal04), avian (HK156), swine (SwTx98) and mouse-adapted (PR8) influenza viruses to interact with TRIM25 orthologues from mammalian and avian species. Using co-immunoprecipitation assays we show that human TRIM25 binds to all tested NS1 proteins, whereas the chicken TRIM25 ortholog binds preferentially to the NS1 from the avian virus. Strikingly, none of the NS1 proteins were able to bind mouse TRIM25. Since NS1 can inhibit IFN production in mouse, we tested the impact of TRIM25 and NS1 on RIG-I ubiquitination in mouse cells. While NS1 efficiently suppressed human TRIM25-dependent ubiquitination of RIG-I 2CARD, NS1 inhibited the ubiquitination of full-length mouse RIG-I in a mouse TRIM25-independent manner. Therefore, we tested if the ubiquitin E3 ligase Riplet, which has also been shown to ubiquitinate RIG-I, interacts with NS1. We found that NS1 binds mouse Riplet and inhibits its activity to induce IFN-β in murine cells. Furthermore, NS1 proteins of human but not swine or avian viruses were able to interact with human Riplet, thereby suppressing RIG-I ubiquitination. In conclusion, our results indicate that influenza NS1 protein targets TRIM25 and Riplet ubiquitin E3 ligases in a species-specific manner for the inhibition of RIG-I ubiquitination and antiviral IFN production.</description><subject>Animals</subject><subject>Biology</subject><subject>Chlorocebus aethiops</subject><subject>DEAD Box Protein 58</subject><subject>DEAD-box RNA Helicases - genetics</subject><subject>DEAD-box RNA Helicases - metabolism</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Dogs</subject><subject>Health aspects</subject><subject>HeLa Cells</subject><subject>Hogs</subject><subject>Humans</subject><subject>Infections</subject><subject>Influenza</subject><subject>Influenza A virus - genetics</subject><subject>Influenza A virus - metabolism</subject><subject>Influenza viruses</subject><subject>Influenza, Human - genetics</subject><subject>Influenza, Human - metabolism</subject><subject>Interferon</subject><subject>Interferons - biosynthesis</subject><subject>Interferons - genetics</subject><subject>Medicine</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Microscopy</subject><subject>Physiological aspects</subject><subject>Proteins</subject><subject>Receptors, Immunologic</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Tripartite Motif Proteins</subject><subject>Ubiquitin-proteasome system</subject><subject>Ubiquitin-Protein Ligases - genetics</subject><subject>Ubiquitin-Protein Ligases - metabolism</subject><subject>Ubiquitination</subject><subject>Vero Cells</subject><subject>Viral Nonstructural Proteins - genetics</subject><subject>Viral Nonstructural Proteins - metabolism</subject><subject>Viral proteins</subject><subject>Virulence (Microbiology)</subject><subject>Viruses</subject><issn>1553-7374</issn><issn>1553-7366</issn><issn>1553-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVkl1v0zAUhiMEYmPwDxBE4gYuUvwZJzeTqomNSFORVri2bMduXaV2ZicT49fjttm0ot1gX9h6_ZzXPscny95DMIOYwa8bPwYnulnfi2EGAcCA1i-yU0gpLhhm5OWT_Un2JsYNAARiWL7OThBGoCYInWabZa-V1bGIu9VYlVu3ttIO1rvcm_ymuSqafJT2dkyaE3tduDZvLhcJbUe1V-R9Pqx1Ekw3avdH5PP8zoYx5oslzPvgB23d2-yVEV3U76b1LPt1-e3nxffi-sdVczG_LhRDbCgUxqqqagkQrgQyUDJdl6zCDFHCTAkxlVIJzTBpWUmpAABUjJW4RQoQoCt8ln08-Padj3wqU-QQVTWEiDCWiOZAtF5seB_sVoR77oXle8GHFRdhsKrTvKw0qytjWt1KAimp6kphgCEpATFSkuR1Pt02yq1ulXZDEN2R6fGJs2u-8nccUwgQxcng82QQ_O2o48C3NirddcJpP-7enQamhKCEfvoHfT67iVqJlED6Ep_uVTtTPscQQUAZKBM1e4ZKs9Vbq7zTxib9KODLUUBiBv17WIkxRt4sb_6DXRyz5MCq4GMM2jzWDgK-6_SHJPmu0_nU6Snsw9O6PwY9tDb-C7kf9vM</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>Rajsbaum, Ricardo</creator><creator>Albrecht, Randy A</creator><creator>Wang, May K</creator><creator>Maharaj, Natalya P</creator><creator>Versteeg, Gijs A</creator><creator>Nistal-Villán, Estanislao</creator><creator>García-Sastre, Adolfo</creator><creator>Gack, Michaela U</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20121101</creationdate><title>Species-specific inhibition of RIG-I ubiquitination and IFN induction by the influenza A virus NS1 protein</title><author>Rajsbaum, Ricardo ; Albrecht, Randy A ; Wang, May K ; Maharaj, Natalya P ; Versteeg, Gijs A ; Nistal-Villán, Estanislao ; García-Sastre, Adolfo ; Gack, Michaela U</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c727t-c33c889b0238a2f1b7e9678372547f6135bbcae734d7655a00087763d2c040e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Biology</topic><topic>Chlorocebus aethiops</topic><topic>DEAD Box Protein 58</topic><topic>DEAD-box RNA Helicases - genetics</topic><topic>DEAD-box RNA Helicases - metabolism</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Dogs</topic><topic>Health aspects</topic><topic>HeLa Cells</topic><topic>Hogs</topic><topic>Humans</topic><topic>Infections</topic><topic>Influenza</topic><topic>Influenza A virus - genetics</topic><topic>Influenza A virus - metabolism</topic><topic>Influenza viruses</topic><topic>Influenza, Human - genetics</topic><topic>Influenza, Human - metabolism</topic><topic>Interferon</topic><topic>Interferons - biosynthesis</topic><topic>Interferons - genetics</topic><topic>Medicine</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Microscopy</topic><topic>Physiological aspects</topic><topic>Proteins</topic><topic>Receptors, Immunologic</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Tripartite Motif Proteins</topic><topic>Ubiquitin-proteasome system</topic><topic>Ubiquitin-Protein Ligases - genetics</topic><topic>Ubiquitin-Protein Ligases - metabolism</topic><topic>Ubiquitination</topic><topic>Vero Cells</topic><topic>Viral Nonstructural Proteins - genetics</topic><topic>Viral Nonstructural Proteins - metabolism</topic><topic>Viral proteins</topic><topic>Virulence (Microbiology)</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rajsbaum, Ricardo</creatorcontrib><creatorcontrib>Albrecht, Randy A</creatorcontrib><creatorcontrib>Wang, May K</creatorcontrib><creatorcontrib>Maharaj, Natalya P</creatorcontrib><creatorcontrib>Versteeg, Gijs A</creatorcontrib><creatorcontrib>Nistal-Villán, Estanislao</creatorcontrib><creatorcontrib>García-Sastre, Adolfo</creatorcontrib><creatorcontrib>Gack, Michaela U</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS pathogens</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rajsbaum, Ricardo</au><au>Albrecht, Randy A</au><au>Wang, May K</au><au>Maharaj, Natalya P</au><au>Versteeg, Gijs A</au><au>Nistal-Villán, Estanislao</au><au>García-Sastre, Adolfo</au><au>Gack, Michaela U</au><au>Pekosz, Andrew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Species-specific inhibition of RIG-I ubiquitination and IFN induction by the influenza A virus NS1 protein</atitle><jtitle>PLoS pathogens</jtitle><addtitle>PLoS Pathog</addtitle><date>2012-11-01</date><risdate>2012</risdate><volume>8</volume><issue>11</issue><spage>e1003059</spage><epage>e1003059</epage><pages>e1003059-e1003059</pages><issn>1553-7374</issn><issn>1553-7366</issn><eissn>1553-7374</eissn><abstract>Influenza A viruses can adapt to new host species, leading to the emergence of novel pathogenic strains. There is evidence that highly pathogenic viruses encode for non-structural 1 (NS1) proteins that are more efficient in suppressing the host immune response. The NS1 protein inhibits type-I interferon (IFN) production partly by blocking the TRIM25 ubiquitin E3 ligase-mediated Lys63-linked ubiquitination of the viral RNA sensor RIG-I, required for its optimal downstream signaling. In order to understand possible mechanisms of viral adaptation and host tropism, we examined the ability of NS1 encoded by human (Cal04), avian (HK156), swine (SwTx98) and mouse-adapted (PR8) influenza viruses to interact with TRIM25 orthologues from mammalian and avian species. Using co-immunoprecipitation assays we show that human TRIM25 binds to all tested NS1 proteins, whereas the chicken TRIM25 ortholog binds preferentially to the NS1 from the avian virus. Strikingly, none of the NS1 proteins were able to bind mouse TRIM25. Since NS1 can inhibit IFN production in mouse, we tested the impact of TRIM25 and NS1 on RIG-I ubiquitination in mouse cells. While NS1 efficiently suppressed human TRIM25-dependent ubiquitination of RIG-I 2CARD, NS1 inhibited the ubiquitination of full-length mouse RIG-I in a mouse TRIM25-independent manner. Therefore, we tested if the ubiquitin E3 ligase Riplet, which has also been shown to ubiquitinate RIG-I, interacts with NS1. We found that NS1 binds mouse Riplet and inhibits its activity to induce IFN-β in murine cells. Furthermore, NS1 proteins of human but not swine or avian viruses were able to interact with human Riplet, thereby suppressing RIG-I ubiquitination. In conclusion, our results indicate that influenza NS1 protein targets TRIM25 and Riplet ubiquitin E3 ligases in a species-specific manner for the inhibition of RIG-I ubiquitination and antiviral IFN production.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23209422</pmid><doi>10.1371/journal.ppat.1003059</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7374 |
ispartof | PLoS pathogens, 2012-11, Vol.8 (11), p.e1003059-e1003059 |
issn | 1553-7374 1553-7366 1553-7374 |
language | eng |
recordid | cdi_plos_journals_1289112477 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; Public Library of Science (PLoS) Journals Open Access; PubMed Central |
subjects | Animals Biology Chlorocebus aethiops DEAD Box Protein 58 DEAD-box RNA Helicases - genetics DEAD-box RNA Helicases - metabolism DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism Dogs Health aspects HeLa Cells Hogs Humans Infections Influenza Influenza A virus - genetics Influenza A virus - metabolism Influenza viruses Influenza, Human - genetics Influenza, Human - metabolism Interferon Interferons - biosynthesis Interferons - genetics Medicine Mice Mice, Knockout Microscopy Physiological aspects Proteins Receptors, Immunologic Transcription Factors - genetics Transcription Factors - metabolism Tripartite Motif Proteins Ubiquitin-proteasome system Ubiquitin-Protein Ligases - genetics Ubiquitin-Protein Ligases - metabolism Ubiquitination Vero Cells Viral Nonstructural Proteins - genetics Viral Nonstructural Proteins - metabolism Viral proteins Virulence (Microbiology) Viruses |
title | Species-specific inhibition of RIG-I ubiquitination and IFN induction by the influenza A virus NS1 protein |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T10%3A04%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Species-specific%20inhibition%20of%20RIG-I%20ubiquitination%20and%20IFN%20induction%20by%20the%20influenza%20A%20virus%20NS1%20protein&rft.jtitle=PLoS%20pathogens&rft.au=Rajsbaum,%20Ricardo&rft.date=2012-11-01&rft.volume=8&rft.issue=11&rft.spage=e1003059&rft.epage=e1003059&rft.pages=e1003059-e1003059&rft.issn=1553-7374&rft.eissn=1553-7374&rft_id=info:doi/10.1371/journal.ppat.1003059&rft_dat=%3Cgale_plos_%3EA312105706%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1289112477&rft_id=info:pmid/23209422&rft_galeid=A312105706&rft_doaj_id=oai_doaj_org_article_68e798ffdedb4154898c30314604fbb4&rfr_iscdi=true |