Neuroimmunological blood brain barrier opening in experimental cerebral malaria

Plasmodium falciparum malaria is responsible for nearly one million annual deaths worldwide. Because of the difficulty in monitoring the pathogenesis of cerebral malaria in humans, we conducted a study in various mouse models to better understand disease progression in experimental cerebral malaria...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS pathogens 2012-10, Vol.8 (10), p.e1002982
Hauptverfasser: Nacer, Adela, Movila, Alexandru, Baer, Kerstin, Mikolajczak, Sebastian A, Kappe, Stefan H I, Frevert, Ute
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page e1002982
container_title PLoS pathogens
container_volume 8
creator Nacer, Adela
Movila, Alexandru
Baer, Kerstin
Mikolajczak, Sebastian A
Kappe, Stefan H I
Frevert, Ute
description Plasmodium falciparum malaria is responsible for nearly one million annual deaths worldwide. Because of the difficulty in monitoring the pathogenesis of cerebral malaria in humans, we conducted a study in various mouse models to better understand disease progression in experimental cerebral malaria (ECM). We compared the effect on the integrity of the blood brain barrier (BBB) and the histopathology of the brain of P. berghei ANKA, a known ECM model, P. berghei NK65, generally thought not to induce ECM, P. yoelii 17XL, originally reported to induce human cerebral malaria-like histopathology, and P. yoelii YM. As expected, P. berghei ANKA infection caused neurological signs, cerebral hemorrhages, and BBB dysfunction in CBA/CaJ and Swiss Webster mice, while Balb/c and A/J mice were resistant. Surprisingly, PbNK induced ECM in CBA/CaJ mice, while all other mice were resistant. P. yoelii 17XL and P. yoelii YM caused lethal hyperparasitemia in all mouse strains; histopathological alterations, BBB dysfunction, or neurological signs were not observed. Intravital imaging revealed that infected erythrocytes containing mature parasites passed slowly through capillaries making intimate contact with the endothelium, but did not arrest. Except for relatively rare microhemorrhages, mice with ECM presented no obvious histopathological alterations that would explain the widespread disruption of the BBB. Intravital imaging did reveal, however, that postcapillary venules, but not capillaries or arterioles, from mice with ECM, but not hyperparasitemia, exhibit platelet marginalization, extravascular fibrin deposition, CD14 expression, and extensive vascular leakage. Blockage of LFA-1 mediated cellular interactions prevented leukocyte adhesion, vascular leakage, neurological signs, and death from ECM. The endothelial barrier-stabilizing mediators imatinib and FTY720 inhibited vascular leakage and neurological signs and prolonged survival to ECM. Thus, it appears that neurological signs and coma in ECM are due to regulated opening of paracellular-junctional and transcellular-vesicular fluid transport pathways at the neuroimmunological BBB.
doi_str_mv 10.1371/journal.ppat.1002982
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1289109488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A309069129</galeid><doaj_id>oai_doaj_org_article_ff39d7fdce9d41f185422f6fd36ab36a</doaj_id><sourcerecordid>A309069129</sourcerecordid><originalsourceid>FETCH-LOGICAL-c661t-f213bddab273ee149b81056d7ced5e74088a7ceed18be18c95e2afa7975f89e63</originalsourceid><addsrcrecordid>eNqVkt9r1TAUx4sobk7_A9GCT3u41_xom-RFGMPphbGBP55DmpzUXNqkJu2Y_72Ztxsr6IOEkMPJ5_vNyeEUxWuMtpgy_H4f5uhVvx1HNW0xQkRw8qQ4xnVNN4yy6umj-Kh4kdIeoQpT3DwvjgjFlFJWHxfXVzDH4IZh9qEPndOqL9s-BFO2UTlftipGB7EMI3jnuzKn4HaE6AbwU2Y1RMhkXw6qV9Gpl8Uzq_oEr5bzpPh-8fHb-efN5fWn3fnZ5UY3DZ42lmDaGqNawigArkTLMaobwzSYGliFOFc5BoN5C5hrUQNRVjHBassFNPSkeHvwHfuQ5NKLJDHhAiNRcZ6J3YEwQe3lmCtW8ZcMysk_iRA7qeLkdA_SWioMs0aDMBW2mNcVIbaxhjaqzTt7fVhem9sBMuen_OeV6frGux-yCzeSVrwRmGWDd4tBDD9nSNM_Sl6oTuWqnLchm-nBJS3PKBIoWxGRqe1fqLwMDE4HD9bl_EpwuhJkZoLbqVNzSnL39ct_sFdrtjqwOoaUItiHhmAk72b0_pPybkblMqNZ9uZxMx9E90NJfwP5jORJ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1289109488</pqid></control><display><type>article</type><title>Neuroimmunological blood brain barrier opening in experimental cerebral malaria</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Nacer, Adela ; Movila, Alexandru ; Baer, Kerstin ; Mikolajczak, Sebastian A ; Kappe, Stefan H I ; Frevert, Ute</creator><contributor>Riley, Eleanor M.</contributor><creatorcontrib>Nacer, Adela ; Movila, Alexandru ; Baer, Kerstin ; Mikolajczak, Sebastian A ; Kappe, Stefan H I ; Frevert, Ute ; Riley, Eleanor M.</creatorcontrib><description>Plasmodium falciparum malaria is responsible for nearly one million annual deaths worldwide. Because of the difficulty in monitoring the pathogenesis of cerebral malaria in humans, we conducted a study in various mouse models to better understand disease progression in experimental cerebral malaria (ECM). We compared the effect on the integrity of the blood brain barrier (BBB) and the histopathology of the brain of P. berghei ANKA, a known ECM model, P. berghei NK65, generally thought not to induce ECM, P. yoelii 17XL, originally reported to induce human cerebral malaria-like histopathology, and P. yoelii YM. As expected, P. berghei ANKA infection caused neurological signs, cerebral hemorrhages, and BBB dysfunction in CBA/CaJ and Swiss Webster mice, while Balb/c and A/J mice were resistant. Surprisingly, PbNK induced ECM in CBA/CaJ mice, while all other mice were resistant. P. yoelii 17XL and P. yoelii YM caused lethal hyperparasitemia in all mouse strains; histopathological alterations, BBB dysfunction, or neurological signs were not observed. Intravital imaging revealed that infected erythrocytes containing mature parasites passed slowly through capillaries making intimate contact with the endothelium, but did not arrest. Except for relatively rare microhemorrhages, mice with ECM presented no obvious histopathological alterations that would explain the widespread disruption of the BBB. Intravital imaging did reveal, however, that postcapillary venules, but not capillaries or arterioles, from mice with ECM, but not hyperparasitemia, exhibit platelet marginalization, extravascular fibrin deposition, CD14 expression, and extensive vascular leakage. Blockage of LFA-1 mediated cellular interactions prevented leukocyte adhesion, vascular leakage, neurological signs, and death from ECM. The endothelial barrier-stabilizing mediators imatinib and FTY720 inhibited vascular leakage and neurological signs and prolonged survival to ECM. Thus, it appears that neurological signs and coma in ECM are due to regulated opening of paracellular-junctional and transcellular-vesicular fluid transport pathways at the neuroimmunological BBB.</description><identifier>ISSN: 1553-7374</identifier><identifier>ISSN: 1553-7366</identifier><identifier>EISSN: 1553-7374</identifier><identifier>DOI: 10.1371/journal.ppat.1002982</identifier><identifier>PMID: 23133375</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Arrests ; Benzamides ; Biology ; Blood ; Blood platelets ; Blood-brain barrier ; Blood-Brain Barrier - immunology ; Blood-Brain Barrier - pathology ; Blood-Brain Barrier - physiopathology ; Cerebral Hemorrhage - drug therapy ; Cerebral Hemorrhage - etiology ; Cerebrum ; Coma ; Development and progression ; Disease Models, Animal ; Endothelium ; Fatalities ; Fingolimod Hydrochloride ; Health aspects ; Imatinib Mesylate ; Immunology ; Lipopolysaccharide Receptors - biosynthesis ; Lymphocyte Function-Associated Antigen-1 - metabolism ; Malaria ; Malaria, Cerebral - drug therapy ; Malaria, Cerebral - pathology ; Medicine ; Mice ; Mice, Inbred BALB C ; Mice, Inbred CBA ; Mortality ; Neuroimmunomodulation ; Parasitemia ; Parasites ; Pathogenesis ; Pathology ; Pediatrics ; Physiological aspects ; Piperazines - pharmacology ; Plasmodium berghei - pathogenicity ; Plasmodium falciparum - pathogenicity ; Plasmodium yoelii - pathogenicity ; Propylene Glycols - pharmacology ; Pyrimidines - pharmacology ; Sphingosine - analogs &amp; derivatives ; Sphingosine - pharmacology ; Time series ; Virulence (Microbiology)</subject><ispartof>PLoS pathogens, 2012-10, Vol.8 (10), p.e1002982</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Nacer et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Nacer A, Movila A, Baer K, Mikolajczak SA, Kappe SHI, et al. (2012) Neuroimmunological Blood Brain Barrier Opening in Experimental Cerebral Malaria. PLoS Pathog 8(10): e1002982. doi:10.1371/journal.ppat.1002982</rights><rights>2012 Nacer et al 2012 Nacer et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c661t-f213bddab273ee149b81056d7ced5e74088a7ceed18be18c95e2afa7975f89e63</citedby><cites>FETCH-LOGICAL-c661t-f213bddab273ee149b81056d7ced5e74088a7ceed18be18c95e2afa7975f89e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3486917/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3486917/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23133375$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Riley, Eleanor M.</contributor><creatorcontrib>Nacer, Adela</creatorcontrib><creatorcontrib>Movila, Alexandru</creatorcontrib><creatorcontrib>Baer, Kerstin</creatorcontrib><creatorcontrib>Mikolajczak, Sebastian A</creatorcontrib><creatorcontrib>Kappe, Stefan H I</creatorcontrib><creatorcontrib>Frevert, Ute</creatorcontrib><title>Neuroimmunological blood brain barrier opening in experimental cerebral malaria</title><title>PLoS pathogens</title><addtitle>PLoS Pathog</addtitle><description>Plasmodium falciparum malaria is responsible for nearly one million annual deaths worldwide. Because of the difficulty in monitoring the pathogenesis of cerebral malaria in humans, we conducted a study in various mouse models to better understand disease progression in experimental cerebral malaria (ECM). We compared the effect on the integrity of the blood brain barrier (BBB) and the histopathology of the brain of P. berghei ANKA, a known ECM model, P. berghei NK65, generally thought not to induce ECM, P. yoelii 17XL, originally reported to induce human cerebral malaria-like histopathology, and P. yoelii YM. As expected, P. berghei ANKA infection caused neurological signs, cerebral hemorrhages, and BBB dysfunction in CBA/CaJ and Swiss Webster mice, while Balb/c and A/J mice were resistant. Surprisingly, PbNK induced ECM in CBA/CaJ mice, while all other mice were resistant. P. yoelii 17XL and P. yoelii YM caused lethal hyperparasitemia in all mouse strains; histopathological alterations, BBB dysfunction, or neurological signs were not observed. Intravital imaging revealed that infected erythrocytes containing mature parasites passed slowly through capillaries making intimate contact with the endothelium, but did not arrest. Except for relatively rare microhemorrhages, mice with ECM presented no obvious histopathological alterations that would explain the widespread disruption of the BBB. Intravital imaging did reveal, however, that postcapillary venules, but not capillaries or arterioles, from mice with ECM, but not hyperparasitemia, exhibit platelet marginalization, extravascular fibrin deposition, CD14 expression, and extensive vascular leakage. Blockage of LFA-1 mediated cellular interactions prevented leukocyte adhesion, vascular leakage, neurological signs, and death from ECM. The endothelial barrier-stabilizing mediators imatinib and FTY720 inhibited vascular leakage and neurological signs and prolonged survival to ECM. Thus, it appears that neurological signs and coma in ECM are due to regulated opening of paracellular-junctional and transcellular-vesicular fluid transport pathways at the neuroimmunological BBB.</description><subject>Animals</subject><subject>Arrests</subject><subject>Benzamides</subject><subject>Biology</subject><subject>Blood</subject><subject>Blood platelets</subject><subject>Blood-brain barrier</subject><subject>Blood-Brain Barrier - immunology</subject><subject>Blood-Brain Barrier - pathology</subject><subject>Blood-Brain Barrier - physiopathology</subject><subject>Cerebral Hemorrhage - drug therapy</subject><subject>Cerebral Hemorrhage - etiology</subject><subject>Cerebrum</subject><subject>Coma</subject><subject>Development and progression</subject><subject>Disease Models, Animal</subject><subject>Endothelium</subject><subject>Fatalities</subject><subject>Fingolimod Hydrochloride</subject><subject>Health aspects</subject><subject>Imatinib Mesylate</subject><subject>Immunology</subject><subject>Lipopolysaccharide Receptors - biosynthesis</subject><subject>Lymphocyte Function-Associated Antigen-1 - metabolism</subject><subject>Malaria</subject><subject>Malaria, Cerebral - drug therapy</subject><subject>Malaria, Cerebral - pathology</subject><subject>Medicine</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Mice, Inbred CBA</subject><subject>Mortality</subject><subject>Neuroimmunomodulation</subject><subject>Parasitemia</subject><subject>Parasites</subject><subject>Pathogenesis</subject><subject>Pathology</subject><subject>Pediatrics</subject><subject>Physiological aspects</subject><subject>Piperazines - pharmacology</subject><subject>Plasmodium berghei - pathogenicity</subject><subject>Plasmodium falciparum - pathogenicity</subject><subject>Plasmodium yoelii - pathogenicity</subject><subject>Propylene Glycols - pharmacology</subject><subject>Pyrimidines - pharmacology</subject><subject>Sphingosine - analogs &amp; derivatives</subject><subject>Sphingosine - pharmacology</subject><subject>Time series</subject><subject>Virulence (Microbiology)</subject><issn>1553-7374</issn><issn>1553-7366</issn><issn>1553-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVkt9r1TAUx4sobk7_A9GCT3u41_xom-RFGMPphbGBP55DmpzUXNqkJu2Y_72Ztxsr6IOEkMPJ5_vNyeEUxWuMtpgy_H4f5uhVvx1HNW0xQkRw8qQ4xnVNN4yy6umj-Kh4kdIeoQpT3DwvjgjFlFJWHxfXVzDH4IZh9qEPndOqL9s-BFO2UTlftipGB7EMI3jnuzKn4HaE6AbwU2Y1RMhkXw6qV9Gpl8Uzq_oEr5bzpPh-8fHb-efN5fWn3fnZ5UY3DZ42lmDaGqNawigArkTLMaobwzSYGliFOFc5BoN5C5hrUQNRVjHBassFNPSkeHvwHfuQ5NKLJDHhAiNRcZ6J3YEwQe3lmCtW8ZcMysk_iRA7qeLkdA_SWioMs0aDMBW2mNcVIbaxhjaqzTt7fVhem9sBMuen_OeV6frGux-yCzeSVrwRmGWDd4tBDD9nSNM_Sl6oTuWqnLchm-nBJS3PKBIoWxGRqe1fqLwMDE4HD9bl_EpwuhJkZoLbqVNzSnL39ct_sFdrtjqwOoaUItiHhmAk72b0_pPybkblMqNZ9uZxMx9E90NJfwP5jORJ</recordid><startdate>20121001</startdate><enddate>20121001</enddate><creator>Nacer, Adela</creator><creator>Movila, Alexandru</creator><creator>Baer, Kerstin</creator><creator>Mikolajczak, Sebastian A</creator><creator>Kappe, Stefan H I</creator><creator>Frevert, Ute</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20121001</creationdate><title>Neuroimmunological blood brain barrier opening in experimental cerebral malaria</title><author>Nacer, Adela ; Movila, Alexandru ; Baer, Kerstin ; Mikolajczak, Sebastian A ; Kappe, Stefan H I ; Frevert, Ute</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c661t-f213bddab273ee149b81056d7ced5e74088a7ceed18be18c95e2afa7975f89e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Arrests</topic><topic>Benzamides</topic><topic>Biology</topic><topic>Blood</topic><topic>Blood platelets</topic><topic>Blood-brain barrier</topic><topic>Blood-Brain Barrier - immunology</topic><topic>Blood-Brain Barrier - pathology</topic><topic>Blood-Brain Barrier - physiopathology</topic><topic>Cerebral Hemorrhage - drug therapy</topic><topic>Cerebral Hemorrhage - etiology</topic><topic>Cerebrum</topic><topic>Coma</topic><topic>Development and progression</topic><topic>Disease Models, Animal</topic><topic>Endothelium</topic><topic>Fatalities</topic><topic>Fingolimod Hydrochloride</topic><topic>Health aspects</topic><topic>Imatinib Mesylate</topic><topic>Immunology</topic><topic>Lipopolysaccharide Receptors - biosynthesis</topic><topic>Lymphocyte Function-Associated Antigen-1 - metabolism</topic><topic>Malaria</topic><topic>Malaria, Cerebral - drug therapy</topic><topic>Malaria, Cerebral - pathology</topic><topic>Medicine</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Mice, Inbred CBA</topic><topic>Mortality</topic><topic>Neuroimmunomodulation</topic><topic>Parasitemia</topic><topic>Parasites</topic><topic>Pathogenesis</topic><topic>Pathology</topic><topic>Pediatrics</topic><topic>Physiological aspects</topic><topic>Piperazines - pharmacology</topic><topic>Plasmodium berghei - pathogenicity</topic><topic>Plasmodium falciparum - pathogenicity</topic><topic>Plasmodium yoelii - pathogenicity</topic><topic>Propylene Glycols - pharmacology</topic><topic>Pyrimidines - pharmacology</topic><topic>Sphingosine - analogs &amp; derivatives</topic><topic>Sphingosine - pharmacology</topic><topic>Time series</topic><topic>Virulence (Microbiology)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nacer, Adela</creatorcontrib><creatorcontrib>Movila, Alexandru</creatorcontrib><creatorcontrib>Baer, Kerstin</creatorcontrib><creatorcontrib>Mikolajczak, Sebastian A</creatorcontrib><creatorcontrib>Kappe, Stefan H I</creatorcontrib><creatorcontrib>Frevert, Ute</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS pathogens</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nacer, Adela</au><au>Movila, Alexandru</au><au>Baer, Kerstin</au><au>Mikolajczak, Sebastian A</au><au>Kappe, Stefan H I</au><au>Frevert, Ute</au><au>Riley, Eleanor M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neuroimmunological blood brain barrier opening in experimental cerebral malaria</atitle><jtitle>PLoS pathogens</jtitle><addtitle>PLoS Pathog</addtitle><date>2012-10-01</date><risdate>2012</risdate><volume>8</volume><issue>10</issue><spage>e1002982</spage><pages>e1002982-</pages><issn>1553-7374</issn><issn>1553-7366</issn><eissn>1553-7374</eissn><abstract>Plasmodium falciparum malaria is responsible for nearly one million annual deaths worldwide. Because of the difficulty in monitoring the pathogenesis of cerebral malaria in humans, we conducted a study in various mouse models to better understand disease progression in experimental cerebral malaria (ECM). We compared the effect on the integrity of the blood brain barrier (BBB) and the histopathology of the brain of P. berghei ANKA, a known ECM model, P. berghei NK65, generally thought not to induce ECM, P. yoelii 17XL, originally reported to induce human cerebral malaria-like histopathology, and P. yoelii YM. As expected, P. berghei ANKA infection caused neurological signs, cerebral hemorrhages, and BBB dysfunction in CBA/CaJ and Swiss Webster mice, while Balb/c and A/J mice were resistant. Surprisingly, PbNK induced ECM in CBA/CaJ mice, while all other mice were resistant. P. yoelii 17XL and P. yoelii YM caused lethal hyperparasitemia in all mouse strains; histopathological alterations, BBB dysfunction, or neurological signs were not observed. Intravital imaging revealed that infected erythrocytes containing mature parasites passed slowly through capillaries making intimate contact with the endothelium, but did not arrest. Except for relatively rare microhemorrhages, mice with ECM presented no obvious histopathological alterations that would explain the widespread disruption of the BBB. Intravital imaging did reveal, however, that postcapillary venules, but not capillaries or arterioles, from mice with ECM, but not hyperparasitemia, exhibit platelet marginalization, extravascular fibrin deposition, CD14 expression, and extensive vascular leakage. Blockage of LFA-1 mediated cellular interactions prevented leukocyte adhesion, vascular leakage, neurological signs, and death from ECM. The endothelial barrier-stabilizing mediators imatinib and FTY720 inhibited vascular leakage and neurological signs and prolonged survival to ECM. Thus, it appears that neurological signs and coma in ECM are due to regulated opening of paracellular-junctional and transcellular-vesicular fluid transport pathways at the neuroimmunological BBB.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23133375</pmid><doi>10.1371/journal.ppat.1002982</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7374
ispartof PLoS pathogens, 2012-10, Vol.8 (10), p.e1002982
issn 1553-7374
1553-7366
1553-7374
language eng
recordid cdi_plos_journals_1289109488
source Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access
subjects Animals
Arrests
Benzamides
Biology
Blood
Blood platelets
Blood-brain barrier
Blood-Brain Barrier - immunology
Blood-Brain Barrier - pathology
Blood-Brain Barrier - physiopathology
Cerebral Hemorrhage - drug therapy
Cerebral Hemorrhage - etiology
Cerebrum
Coma
Development and progression
Disease Models, Animal
Endothelium
Fatalities
Fingolimod Hydrochloride
Health aspects
Imatinib Mesylate
Immunology
Lipopolysaccharide Receptors - biosynthesis
Lymphocyte Function-Associated Antigen-1 - metabolism
Malaria
Malaria, Cerebral - drug therapy
Malaria, Cerebral - pathology
Medicine
Mice
Mice, Inbred BALB C
Mice, Inbred CBA
Mortality
Neuroimmunomodulation
Parasitemia
Parasites
Pathogenesis
Pathology
Pediatrics
Physiological aspects
Piperazines - pharmacology
Plasmodium berghei - pathogenicity
Plasmodium falciparum - pathogenicity
Plasmodium yoelii - pathogenicity
Propylene Glycols - pharmacology
Pyrimidines - pharmacology
Sphingosine - analogs & derivatives
Sphingosine - pharmacology
Time series
Virulence (Microbiology)
title Neuroimmunological blood brain barrier opening in experimental cerebral malaria
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T15%3A16%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neuroimmunological%20blood%20brain%20barrier%20opening%20in%20experimental%20cerebral%20malaria&rft.jtitle=PLoS%20pathogens&rft.au=Nacer,%20Adela&rft.date=2012-10-01&rft.volume=8&rft.issue=10&rft.spage=e1002982&rft.pages=e1002982-&rft.issn=1553-7374&rft.eissn=1553-7374&rft_id=info:doi/10.1371/journal.ppat.1002982&rft_dat=%3Cgale_plos_%3EA309069129%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1289109488&rft_id=info:pmid/23133375&rft_galeid=A309069129&rft_doaj_id=oai_doaj_org_article_ff39d7fdce9d41f185422f6fd36ab36a&rfr_iscdi=true