Neuroimmunological blood brain barrier opening in experimental cerebral malaria
Plasmodium falciparum malaria is responsible for nearly one million annual deaths worldwide. Because of the difficulty in monitoring the pathogenesis of cerebral malaria in humans, we conducted a study in various mouse models to better understand disease progression in experimental cerebral malaria...
Gespeichert in:
Veröffentlicht in: | PLoS pathogens 2012-10, Vol.8 (10), p.e1002982 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | e1002982 |
container_title | PLoS pathogens |
container_volume | 8 |
creator | Nacer, Adela Movila, Alexandru Baer, Kerstin Mikolajczak, Sebastian A Kappe, Stefan H I Frevert, Ute |
description | Plasmodium falciparum malaria is responsible for nearly one million annual deaths worldwide. Because of the difficulty in monitoring the pathogenesis of cerebral malaria in humans, we conducted a study in various mouse models to better understand disease progression in experimental cerebral malaria (ECM). We compared the effect on the integrity of the blood brain barrier (BBB) and the histopathology of the brain of P. berghei ANKA, a known ECM model, P. berghei NK65, generally thought not to induce ECM, P. yoelii 17XL, originally reported to induce human cerebral malaria-like histopathology, and P. yoelii YM. As expected, P. berghei ANKA infection caused neurological signs, cerebral hemorrhages, and BBB dysfunction in CBA/CaJ and Swiss Webster mice, while Balb/c and A/J mice were resistant. Surprisingly, PbNK induced ECM in CBA/CaJ mice, while all other mice were resistant. P. yoelii 17XL and P. yoelii YM caused lethal hyperparasitemia in all mouse strains; histopathological alterations, BBB dysfunction, or neurological signs were not observed. Intravital imaging revealed that infected erythrocytes containing mature parasites passed slowly through capillaries making intimate contact with the endothelium, but did not arrest. Except for relatively rare microhemorrhages, mice with ECM presented no obvious histopathological alterations that would explain the widespread disruption of the BBB. Intravital imaging did reveal, however, that postcapillary venules, but not capillaries or arterioles, from mice with ECM, but not hyperparasitemia, exhibit platelet marginalization, extravascular fibrin deposition, CD14 expression, and extensive vascular leakage. Blockage of LFA-1 mediated cellular interactions prevented leukocyte adhesion, vascular leakage, neurological signs, and death from ECM. The endothelial barrier-stabilizing mediators imatinib and FTY720 inhibited vascular leakage and neurological signs and prolonged survival to ECM. Thus, it appears that neurological signs and coma in ECM are due to regulated opening of paracellular-junctional and transcellular-vesicular fluid transport pathways at the neuroimmunological BBB. |
doi_str_mv | 10.1371/journal.ppat.1002982 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1289109488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A309069129</galeid><doaj_id>oai_doaj_org_article_ff39d7fdce9d41f185422f6fd36ab36a</doaj_id><sourcerecordid>A309069129</sourcerecordid><originalsourceid>FETCH-LOGICAL-c661t-f213bddab273ee149b81056d7ced5e74088a7ceed18be18c95e2afa7975f89e63</originalsourceid><addsrcrecordid>eNqVkt9r1TAUx4sobk7_A9GCT3u41_xom-RFGMPphbGBP55DmpzUXNqkJu2Y_72Ztxsr6IOEkMPJ5_vNyeEUxWuMtpgy_H4f5uhVvx1HNW0xQkRw8qQ4xnVNN4yy6umj-Kh4kdIeoQpT3DwvjgjFlFJWHxfXVzDH4IZh9qEPndOqL9s-BFO2UTlftipGB7EMI3jnuzKn4HaE6AbwU2Y1RMhkXw6qV9Gpl8Uzq_oEr5bzpPh-8fHb-efN5fWn3fnZ5UY3DZ42lmDaGqNawigArkTLMaobwzSYGliFOFc5BoN5C5hrUQNRVjHBassFNPSkeHvwHfuQ5NKLJDHhAiNRcZ6J3YEwQe3lmCtW8ZcMysk_iRA7qeLkdA_SWioMs0aDMBW2mNcVIbaxhjaqzTt7fVhem9sBMuen_OeV6frGux-yCzeSVrwRmGWDd4tBDD9nSNM_Sl6oTuWqnLchm-nBJS3PKBIoWxGRqe1fqLwMDE4HD9bl_EpwuhJkZoLbqVNzSnL39ct_sFdrtjqwOoaUItiHhmAk72b0_pPybkblMqNZ9uZxMx9E90NJfwP5jORJ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1289109488</pqid></control><display><type>article</type><title>Neuroimmunological blood brain barrier opening in experimental cerebral malaria</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Nacer, Adela ; Movila, Alexandru ; Baer, Kerstin ; Mikolajczak, Sebastian A ; Kappe, Stefan H I ; Frevert, Ute</creator><contributor>Riley, Eleanor M.</contributor><creatorcontrib>Nacer, Adela ; Movila, Alexandru ; Baer, Kerstin ; Mikolajczak, Sebastian A ; Kappe, Stefan H I ; Frevert, Ute ; Riley, Eleanor M.</creatorcontrib><description>Plasmodium falciparum malaria is responsible for nearly one million annual deaths worldwide. Because of the difficulty in monitoring the pathogenesis of cerebral malaria in humans, we conducted a study in various mouse models to better understand disease progression in experimental cerebral malaria (ECM). We compared the effect on the integrity of the blood brain barrier (BBB) and the histopathology of the brain of P. berghei ANKA, a known ECM model, P. berghei NK65, generally thought not to induce ECM, P. yoelii 17XL, originally reported to induce human cerebral malaria-like histopathology, and P. yoelii YM. As expected, P. berghei ANKA infection caused neurological signs, cerebral hemorrhages, and BBB dysfunction in CBA/CaJ and Swiss Webster mice, while Balb/c and A/J mice were resistant. Surprisingly, PbNK induced ECM in CBA/CaJ mice, while all other mice were resistant. P. yoelii 17XL and P. yoelii YM caused lethal hyperparasitemia in all mouse strains; histopathological alterations, BBB dysfunction, or neurological signs were not observed. Intravital imaging revealed that infected erythrocytes containing mature parasites passed slowly through capillaries making intimate contact with the endothelium, but did not arrest. Except for relatively rare microhemorrhages, mice with ECM presented no obvious histopathological alterations that would explain the widespread disruption of the BBB. Intravital imaging did reveal, however, that postcapillary venules, but not capillaries or arterioles, from mice with ECM, but not hyperparasitemia, exhibit platelet marginalization, extravascular fibrin deposition, CD14 expression, and extensive vascular leakage. Blockage of LFA-1 mediated cellular interactions prevented leukocyte adhesion, vascular leakage, neurological signs, and death from ECM. The endothelial barrier-stabilizing mediators imatinib and FTY720 inhibited vascular leakage and neurological signs and prolonged survival to ECM. Thus, it appears that neurological signs and coma in ECM are due to regulated opening of paracellular-junctional and transcellular-vesicular fluid transport pathways at the neuroimmunological BBB.</description><identifier>ISSN: 1553-7374</identifier><identifier>ISSN: 1553-7366</identifier><identifier>EISSN: 1553-7374</identifier><identifier>DOI: 10.1371/journal.ppat.1002982</identifier><identifier>PMID: 23133375</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Arrests ; Benzamides ; Biology ; Blood ; Blood platelets ; Blood-brain barrier ; Blood-Brain Barrier - immunology ; Blood-Brain Barrier - pathology ; Blood-Brain Barrier - physiopathology ; Cerebral Hemorrhage - drug therapy ; Cerebral Hemorrhage - etiology ; Cerebrum ; Coma ; Development and progression ; Disease Models, Animal ; Endothelium ; Fatalities ; Fingolimod Hydrochloride ; Health aspects ; Imatinib Mesylate ; Immunology ; Lipopolysaccharide Receptors - biosynthesis ; Lymphocyte Function-Associated Antigen-1 - metabolism ; Malaria ; Malaria, Cerebral - drug therapy ; Malaria, Cerebral - pathology ; Medicine ; Mice ; Mice, Inbred BALB C ; Mice, Inbred CBA ; Mortality ; Neuroimmunomodulation ; Parasitemia ; Parasites ; Pathogenesis ; Pathology ; Pediatrics ; Physiological aspects ; Piperazines - pharmacology ; Plasmodium berghei - pathogenicity ; Plasmodium falciparum - pathogenicity ; Plasmodium yoelii - pathogenicity ; Propylene Glycols - pharmacology ; Pyrimidines - pharmacology ; Sphingosine - analogs & derivatives ; Sphingosine - pharmacology ; Time series ; Virulence (Microbiology)</subject><ispartof>PLoS pathogens, 2012-10, Vol.8 (10), p.e1002982</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Nacer et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Nacer A, Movila A, Baer K, Mikolajczak SA, Kappe SHI, et al. (2012) Neuroimmunological Blood Brain Barrier Opening in Experimental Cerebral Malaria. PLoS Pathog 8(10): e1002982. doi:10.1371/journal.ppat.1002982</rights><rights>2012 Nacer et al 2012 Nacer et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c661t-f213bddab273ee149b81056d7ced5e74088a7ceed18be18c95e2afa7975f89e63</citedby><cites>FETCH-LOGICAL-c661t-f213bddab273ee149b81056d7ced5e74088a7ceed18be18c95e2afa7975f89e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3486917/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3486917/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23133375$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Riley, Eleanor M.</contributor><creatorcontrib>Nacer, Adela</creatorcontrib><creatorcontrib>Movila, Alexandru</creatorcontrib><creatorcontrib>Baer, Kerstin</creatorcontrib><creatorcontrib>Mikolajczak, Sebastian A</creatorcontrib><creatorcontrib>Kappe, Stefan H I</creatorcontrib><creatorcontrib>Frevert, Ute</creatorcontrib><title>Neuroimmunological blood brain barrier opening in experimental cerebral malaria</title><title>PLoS pathogens</title><addtitle>PLoS Pathog</addtitle><description>Plasmodium falciparum malaria is responsible for nearly one million annual deaths worldwide. Because of the difficulty in monitoring the pathogenesis of cerebral malaria in humans, we conducted a study in various mouse models to better understand disease progression in experimental cerebral malaria (ECM). We compared the effect on the integrity of the blood brain barrier (BBB) and the histopathology of the brain of P. berghei ANKA, a known ECM model, P. berghei NK65, generally thought not to induce ECM, P. yoelii 17XL, originally reported to induce human cerebral malaria-like histopathology, and P. yoelii YM. As expected, P. berghei ANKA infection caused neurological signs, cerebral hemorrhages, and BBB dysfunction in CBA/CaJ and Swiss Webster mice, while Balb/c and A/J mice were resistant. Surprisingly, PbNK induced ECM in CBA/CaJ mice, while all other mice were resistant. P. yoelii 17XL and P. yoelii YM caused lethal hyperparasitemia in all mouse strains; histopathological alterations, BBB dysfunction, or neurological signs were not observed. Intravital imaging revealed that infected erythrocytes containing mature parasites passed slowly through capillaries making intimate contact with the endothelium, but did not arrest. Except for relatively rare microhemorrhages, mice with ECM presented no obvious histopathological alterations that would explain the widespread disruption of the BBB. Intravital imaging did reveal, however, that postcapillary venules, but not capillaries or arterioles, from mice with ECM, but not hyperparasitemia, exhibit platelet marginalization, extravascular fibrin deposition, CD14 expression, and extensive vascular leakage. Blockage of LFA-1 mediated cellular interactions prevented leukocyte adhesion, vascular leakage, neurological signs, and death from ECM. The endothelial barrier-stabilizing mediators imatinib and FTY720 inhibited vascular leakage and neurological signs and prolonged survival to ECM. Thus, it appears that neurological signs and coma in ECM are due to regulated opening of paracellular-junctional and transcellular-vesicular fluid transport pathways at the neuroimmunological BBB.</description><subject>Animals</subject><subject>Arrests</subject><subject>Benzamides</subject><subject>Biology</subject><subject>Blood</subject><subject>Blood platelets</subject><subject>Blood-brain barrier</subject><subject>Blood-Brain Barrier - immunology</subject><subject>Blood-Brain Barrier - pathology</subject><subject>Blood-Brain Barrier - physiopathology</subject><subject>Cerebral Hemorrhage - drug therapy</subject><subject>Cerebral Hemorrhage - etiology</subject><subject>Cerebrum</subject><subject>Coma</subject><subject>Development and progression</subject><subject>Disease Models, Animal</subject><subject>Endothelium</subject><subject>Fatalities</subject><subject>Fingolimod Hydrochloride</subject><subject>Health aspects</subject><subject>Imatinib Mesylate</subject><subject>Immunology</subject><subject>Lipopolysaccharide Receptors - biosynthesis</subject><subject>Lymphocyte Function-Associated Antigen-1 - metabolism</subject><subject>Malaria</subject><subject>Malaria, Cerebral - drug therapy</subject><subject>Malaria, Cerebral - pathology</subject><subject>Medicine</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Mice, Inbred CBA</subject><subject>Mortality</subject><subject>Neuroimmunomodulation</subject><subject>Parasitemia</subject><subject>Parasites</subject><subject>Pathogenesis</subject><subject>Pathology</subject><subject>Pediatrics</subject><subject>Physiological aspects</subject><subject>Piperazines - pharmacology</subject><subject>Plasmodium berghei - pathogenicity</subject><subject>Plasmodium falciparum - pathogenicity</subject><subject>Plasmodium yoelii - pathogenicity</subject><subject>Propylene Glycols - pharmacology</subject><subject>Pyrimidines - pharmacology</subject><subject>Sphingosine - analogs & derivatives</subject><subject>Sphingosine - pharmacology</subject><subject>Time series</subject><subject>Virulence (Microbiology)</subject><issn>1553-7374</issn><issn>1553-7366</issn><issn>1553-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVkt9r1TAUx4sobk7_A9GCT3u41_xom-RFGMPphbGBP55DmpzUXNqkJu2Y_72Ztxsr6IOEkMPJ5_vNyeEUxWuMtpgy_H4f5uhVvx1HNW0xQkRw8qQ4xnVNN4yy6umj-Kh4kdIeoQpT3DwvjgjFlFJWHxfXVzDH4IZh9qEPndOqL9s-BFO2UTlftipGB7EMI3jnuzKn4HaE6AbwU2Y1RMhkXw6qV9Gpl8Uzq_oEr5bzpPh-8fHb-efN5fWn3fnZ5UY3DZ42lmDaGqNawigArkTLMaobwzSYGliFOFc5BoN5C5hrUQNRVjHBassFNPSkeHvwHfuQ5NKLJDHhAiNRcZ6J3YEwQe3lmCtW8ZcMysk_iRA7qeLkdA_SWioMs0aDMBW2mNcVIbaxhjaqzTt7fVhem9sBMuen_OeV6frGux-yCzeSVrwRmGWDd4tBDD9nSNM_Sl6oTuWqnLchm-nBJS3PKBIoWxGRqe1fqLwMDE4HD9bl_EpwuhJkZoLbqVNzSnL39ct_sFdrtjqwOoaUItiHhmAk72b0_pPybkblMqNZ9uZxMx9E90NJfwP5jORJ</recordid><startdate>20121001</startdate><enddate>20121001</enddate><creator>Nacer, Adela</creator><creator>Movila, Alexandru</creator><creator>Baer, Kerstin</creator><creator>Mikolajczak, Sebastian A</creator><creator>Kappe, Stefan H I</creator><creator>Frevert, Ute</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20121001</creationdate><title>Neuroimmunological blood brain barrier opening in experimental cerebral malaria</title><author>Nacer, Adela ; Movila, Alexandru ; Baer, Kerstin ; Mikolajczak, Sebastian A ; Kappe, Stefan H I ; Frevert, Ute</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c661t-f213bddab273ee149b81056d7ced5e74088a7ceed18be18c95e2afa7975f89e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Arrests</topic><topic>Benzamides</topic><topic>Biology</topic><topic>Blood</topic><topic>Blood platelets</topic><topic>Blood-brain barrier</topic><topic>Blood-Brain Barrier - immunology</topic><topic>Blood-Brain Barrier - pathology</topic><topic>Blood-Brain Barrier - physiopathology</topic><topic>Cerebral Hemorrhage - drug therapy</topic><topic>Cerebral Hemorrhage - etiology</topic><topic>Cerebrum</topic><topic>Coma</topic><topic>Development and progression</topic><topic>Disease Models, Animal</topic><topic>Endothelium</topic><topic>Fatalities</topic><topic>Fingolimod Hydrochloride</topic><topic>Health aspects</topic><topic>Imatinib Mesylate</topic><topic>Immunology</topic><topic>Lipopolysaccharide Receptors - biosynthesis</topic><topic>Lymphocyte Function-Associated Antigen-1 - metabolism</topic><topic>Malaria</topic><topic>Malaria, Cerebral - drug therapy</topic><topic>Malaria, Cerebral - pathology</topic><topic>Medicine</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Mice, Inbred CBA</topic><topic>Mortality</topic><topic>Neuroimmunomodulation</topic><topic>Parasitemia</topic><topic>Parasites</topic><topic>Pathogenesis</topic><topic>Pathology</topic><topic>Pediatrics</topic><topic>Physiological aspects</topic><topic>Piperazines - pharmacology</topic><topic>Plasmodium berghei - pathogenicity</topic><topic>Plasmodium falciparum - pathogenicity</topic><topic>Plasmodium yoelii - pathogenicity</topic><topic>Propylene Glycols - pharmacology</topic><topic>Pyrimidines - pharmacology</topic><topic>Sphingosine - analogs & derivatives</topic><topic>Sphingosine - pharmacology</topic><topic>Time series</topic><topic>Virulence (Microbiology)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nacer, Adela</creatorcontrib><creatorcontrib>Movila, Alexandru</creatorcontrib><creatorcontrib>Baer, Kerstin</creatorcontrib><creatorcontrib>Mikolajczak, Sebastian A</creatorcontrib><creatorcontrib>Kappe, Stefan H I</creatorcontrib><creatorcontrib>Frevert, Ute</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS pathogens</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nacer, Adela</au><au>Movila, Alexandru</au><au>Baer, Kerstin</au><au>Mikolajczak, Sebastian A</au><au>Kappe, Stefan H I</au><au>Frevert, Ute</au><au>Riley, Eleanor M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neuroimmunological blood brain barrier opening in experimental cerebral malaria</atitle><jtitle>PLoS pathogens</jtitle><addtitle>PLoS Pathog</addtitle><date>2012-10-01</date><risdate>2012</risdate><volume>8</volume><issue>10</issue><spage>e1002982</spage><pages>e1002982-</pages><issn>1553-7374</issn><issn>1553-7366</issn><eissn>1553-7374</eissn><abstract>Plasmodium falciparum malaria is responsible for nearly one million annual deaths worldwide. Because of the difficulty in monitoring the pathogenesis of cerebral malaria in humans, we conducted a study in various mouse models to better understand disease progression in experimental cerebral malaria (ECM). We compared the effect on the integrity of the blood brain barrier (BBB) and the histopathology of the brain of P. berghei ANKA, a known ECM model, P. berghei NK65, generally thought not to induce ECM, P. yoelii 17XL, originally reported to induce human cerebral malaria-like histopathology, and P. yoelii YM. As expected, P. berghei ANKA infection caused neurological signs, cerebral hemorrhages, and BBB dysfunction in CBA/CaJ and Swiss Webster mice, while Balb/c and A/J mice were resistant. Surprisingly, PbNK induced ECM in CBA/CaJ mice, while all other mice were resistant. P. yoelii 17XL and P. yoelii YM caused lethal hyperparasitemia in all mouse strains; histopathological alterations, BBB dysfunction, or neurological signs were not observed. Intravital imaging revealed that infected erythrocytes containing mature parasites passed slowly through capillaries making intimate contact with the endothelium, but did not arrest. Except for relatively rare microhemorrhages, mice with ECM presented no obvious histopathological alterations that would explain the widespread disruption of the BBB. Intravital imaging did reveal, however, that postcapillary venules, but not capillaries or arterioles, from mice with ECM, but not hyperparasitemia, exhibit platelet marginalization, extravascular fibrin deposition, CD14 expression, and extensive vascular leakage. Blockage of LFA-1 mediated cellular interactions prevented leukocyte adhesion, vascular leakage, neurological signs, and death from ECM. The endothelial barrier-stabilizing mediators imatinib and FTY720 inhibited vascular leakage and neurological signs and prolonged survival to ECM. Thus, it appears that neurological signs and coma in ECM are due to regulated opening of paracellular-junctional and transcellular-vesicular fluid transport pathways at the neuroimmunological BBB.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23133375</pmid><doi>10.1371/journal.ppat.1002982</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7374 |
ispartof | PLoS pathogens, 2012-10, Vol.8 (10), p.e1002982 |
issn | 1553-7374 1553-7366 1553-7374 |
language | eng |
recordid | cdi_plos_journals_1289109488 |
source | Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access |
subjects | Animals Arrests Benzamides Biology Blood Blood platelets Blood-brain barrier Blood-Brain Barrier - immunology Blood-Brain Barrier - pathology Blood-Brain Barrier - physiopathology Cerebral Hemorrhage - drug therapy Cerebral Hemorrhage - etiology Cerebrum Coma Development and progression Disease Models, Animal Endothelium Fatalities Fingolimod Hydrochloride Health aspects Imatinib Mesylate Immunology Lipopolysaccharide Receptors - biosynthesis Lymphocyte Function-Associated Antigen-1 - metabolism Malaria Malaria, Cerebral - drug therapy Malaria, Cerebral - pathology Medicine Mice Mice, Inbred BALB C Mice, Inbred CBA Mortality Neuroimmunomodulation Parasitemia Parasites Pathogenesis Pathology Pediatrics Physiological aspects Piperazines - pharmacology Plasmodium berghei - pathogenicity Plasmodium falciparum - pathogenicity Plasmodium yoelii - pathogenicity Propylene Glycols - pharmacology Pyrimidines - pharmacology Sphingosine - analogs & derivatives Sphingosine - pharmacology Time series Virulence (Microbiology) |
title | Neuroimmunological blood brain barrier opening in experimental cerebral malaria |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T15%3A16%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neuroimmunological%20blood%20brain%20barrier%20opening%20in%20experimental%20cerebral%20malaria&rft.jtitle=PLoS%20pathogens&rft.au=Nacer,%20Adela&rft.date=2012-10-01&rft.volume=8&rft.issue=10&rft.spage=e1002982&rft.pages=e1002982-&rft.issn=1553-7374&rft.eissn=1553-7374&rft_id=info:doi/10.1371/journal.ppat.1002982&rft_dat=%3Cgale_plos_%3EA309069129%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1289109488&rft_id=info:pmid/23133375&rft_galeid=A309069129&rft_doaj_id=oai_doaj_org_article_ff39d7fdce9d41f185422f6fd36ab36a&rfr_iscdi=true |