Anopheles Imd pathway factors and effectors in infection intensity-dependent anti-Plasmodium action

The Anopheles gambiae immune response against Plasmodium falciparum, an etiological agent of human malaria, has been identified as a source of potential anti-Plasmodium genes and mechanisms to be exploited in efforts to control the malaria transmission cycle. One such mechanism is the Imd pathway, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS pathogens 2012-06, Vol.8 (6), p.e1002737-e1002737
Hauptverfasser: Garver, Lindsey S, Bahia, Ana C, Das, Suchismita, Souza-Neto, Jayme A, Shiao, Jessica, Dong, Yuemei, Dimopoulos, George
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1002737
container_issue 6
container_start_page e1002737
container_title PLoS pathogens
container_volume 8
creator Garver, Lindsey S
Bahia, Ana C
Das, Suchismita
Souza-Neto, Jayme A
Shiao, Jessica
Dong, Yuemei
Dimopoulos, George
description The Anopheles gambiae immune response against Plasmodium falciparum, an etiological agent of human malaria, has been identified as a source of potential anti-Plasmodium genes and mechanisms to be exploited in efforts to control the malaria transmission cycle. One such mechanism is the Imd pathway, a conserved immune signaling pathway that has potent anti-P. falciparum activity. Silencing the expression of caspar, a negative regulator of the Imd pathway, or over-expressing rel2, an Imd pathway-controlled NFkappaB transcription factor, confers a resistant phenotype on A. gambiae mosquitoes that involves an array of immune effector genes. However, unexplored features of this powerful mechanism that may be essential for the implementation of a malaria control strategy still remain. Using RNA interference to singly or dually silence caspar and other components of the Imd pathway, we have identified genes participating in the anti-Plasmodium signaling module regulated by Caspar, each of which represents a potential target to achieve over-activation of the pathway. We also determined that the Imd pathway is most potent against the parasite's ookinete stage, yet also has reasonable activity against early oocysts and lesser activity against late oocysts. We further demonstrated that caspar silencing alone is sufficient to induce a robust anti-P. falciparum response even in the relative absence of resident gut microbiota. Finally, we established the relevance of the Imd pathway components and regulated effectors TEP1, APL1, and LRIM1 in parasite infection intensity-dependent defense, thereby shedding light on the relevance of laboratory versus natural infection intensity models. Our results highlight the physiological considerations that are integral to a thoughtful implementation of Imd pathway manipulation in A. gambiae as part of an effort to limit the malaria transmission cycle, and they reveal a variety of previously unrecognized nuances in the Imd-directed immune response against P. falciparum.
doi_str_mv 10.1371/journal.ppat.1002737
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1289090417</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A304535999</galeid><doaj_id>oai_doaj_org_article_a51e08c6bad1470ba867425e54c0827e</doaj_id><sourcerecordid>A304535999</sourcerecordid><originalsourceid>FETCH-LOGICAL-c760t-15b704934210fd581de45dcb1fdeb61749cc90747cdad187e83f0a33f7975d163</originalsourceid><addsrcrecordid>eNqVk9-P1CAQxxuj8c7T_8BoE1_Oh65QoJQXk83l1E0uavzxTChMd9m0pRaq7n8vve1druYeNCXpAJ_5wswwSfIcoxUmHL_Zu3HoVLPqexVWGKGcE_4gOcWMkSya9OEd-yR54v0eIYoJLh4nJ3lelIwifJrodef6HTTg001r0qi1-6UOaa10cINPVWdSqGs4zmwXxzSxbrICdN6GQ2agh85AFyIebPa5Ub51xo5tqq7Rp8mjWjUens3_s-T7u8tvFx-yq0_vNxfrq0zzAoUMs4ojKgjNMaoNK7EByoyucG2gKjCnQmuBOOXaKINLDiWpkSKk5oIzgwtylrw86vaN83LOj5c4LwUSMXYeic2RME7tZT_YVg0H6ZSV1wtu2Eo1BKsbkIphQKUuqngW5ahSZcFpzoBRjcqcQ9R6O582Vi0YHeMfVLMQXe50die37qckpBCCllHgfBYY3I8RfJCt9RqaRnXgxnhvlJcoFion_4LG4nKMphBf_YXen4iZ2qoYayyqi1fUk6hcE0QZYUKISK3uoeJnoLXadVDbuL5weL1wiEyA32GrRu_l5uuX_2A_Lll6ZPXgvB-gvk0zRnLqhpsg5dQNcu6G6PbibolunW6eP_kD9Z4FRw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1289090417</pqid></control><display><type>article</type><title>Anopheles Imd pathway factors and effectors in infection intensity-dependent anti-Plasmodium action</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><source>Public Library of Science (PLoS)</source><creator>Garver, Lindsey S ; Bahia, Ana C ; Das, Suchismita ; Souza-Neto, Jayme A ; Shiao, Jessica ; Dong, Yuemei ; Dimopoulos, George</creator><creatorcontrib>Garver, Lindsey S ; Bahia, Ana C ; Das, Suchismita ; Souza-Neto, Jayme A ; Shiao, Jessica ; Dong, Yuemei ; Dimopoulos, George</creatorcontrib><description>The Anopheles gambiae immune response against Plasmodium falciparum, an etiological agent of human malaria, has been identified as a source of potential anti-Plasmodium genes and mechanisms to be exploited in efforts to control the malaria transmission cycle. One such mechanism is the Imd pathway, a conserved immune signaling pathway that has potent anti-P. falciparum activity. Silencing the expression of caspar, a negative regulator of the Imd pathway, or over-expressing rel2, an Imd pathway-controlled NFkappaB transcription factor, confers a resistant phenotype on A. gambiae mosquitoes that involves an array of immune effector genes. However, unexplored features of this powerful mechanism that may be essential for the implementation of a malaria control strategy still remain. Using RNA interference to singly or dually silence caspar and other components of the Imd pathway, we have identified genes participating in the anti-Plasmodium signaling module regulated by Caspar, each of which represents a potential target to achieve over-activation of the pathway. We also determined that the Imd pathway is most potent against the parasite's ookinete stage, yet also has reasonable activity against early oocysts and lesser activity against late oocysts. We further demonstrated that caspar silencing alone is sufficient to induce a robust anti-P. falciparum response even in the relative absence of resident gut microbiota. Finally, we established the relevance of the Imd pathway components and regulated effectors TEP1, APL1, and LRIM1 in parasite infection intensity-dependent defense, thereby shedding light on the relevance of laboratory versus natural infection intensity models. Our results highlight the physiological considerations that are integral to a thoughtful implementation of Imd pathway manipulation in A. gambiae as part of an effort to limit the malaria transmission cycle, and they reveal a variety of previously unrecognized nuances in the Imd-directed immune response against P. falciparum.</description><identifier>ISSN: 1553-7374</identifier><identifier>ISSN: 1553-7366</identifier><identifier>EISSN: 1553-7374</identifier><identifier>DOI: 10.1371/journal.ppat.1002737</identifier><identifier>PMID: 22685401</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Anopheles ; Anopheles - immunology ; Anopheles - parasitology ; Anopheles gambiae ; Biology ; Genomics ; Health aspects ; Immune response ; Insect Proteins - immunology ; Insect Vectors - immunology ; Malaria ; Malaria - immunology ; Malaria, Falciparum - prevention &amp; control ; Mosquitoes ; Parasites ; Physiological aspects ; Plasmodium ; Plasmodium falciparum ; Plasmodium falciparum - immunology ; Proteins ; Real-Time Polymerase Chain Reaction ; RNA Interference ; Signal Transduction ; Virulence (Microbiology)</subject><ispartof>PLoS pathogens, 2012-06, Vol.8 (6), p.e1002737-e1002737</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Garver et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Garver LS, Bahia AC, Das S, Souza-Neto JA, Shiao J, et al. (2012) Anopheles Imd Pathway Factors and Effectors in Infection Intensity-Dependent Anti-Plasmodium Action. PLoS Pathog 8(6): e1002737. doi:10.1371/journal.ppat.1002737</rights><rights>Garver et al. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c760t-15b704934210fd581de45dcb1fdeb61749cc90747cdad187e83f0a33f7975d163</citedby><cites>FETCH-LOGICAL-c760t-15b704934210fd581de45dcb1fdeb61749cc90747cdad187e83f0a33f7975d163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3369948/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3369948/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22685401$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Garver, Lindsey S</creatorcontrib><creatorcontrib>Bahia, Ana C</creatorcontrib><creatorcontrib>Das, Suchismita</creatorcontrib><creatorcontrib>Souza-Neto, Jayme A</creatorcontrib><creatorcontrib>Shiao, Jessica</creatorcontrib><creatorcontrib>Dong, Yuemei</creatorcontrib><creatorcontrib>Dimopoulos, George</creatorcontrib><title>Anopheles Imd pathway factors and effectors in infection intensity-dependent anti-Plasmodium action</title><title>PLoS pathogens</title><addtitle>PLoS Pathog</addtitle><description>The Anopheles gambiae immune response against Plasmodium falciparum, an etiological agent of human malaria, has been identified as a source of potential anti-Plasmodium genes and mechanisms to be exploited in efforts to control the malaria transmission cycle. One such mechanism is the Imd pathway, a conserved immune signaling pathway that has potent anti-P. falciparum activity. Silencing the expression of caspar, a negative regulator of the Imd pathway, or over-expressing rel2, an Imd pathway-controlled NFkappaB transcription factor, confers a resistant phenotype on A. gambiae mosquitoes that involves an array of immune effector genes. However, unexplored features of this powerful mechanism that may be essential for the implementation of a malaria control strategy still remain. Using RNA interference to singly or dually silence caspar and other components of the Imd pathway, we have identified genes participating in the anti-Plasmodium signaling module regulated by Caspar, each of which represents a potential target to achieve over-activation of the pathway. We also determined that the Imd pathway is most potent against the parasite's ookinete stage, yet also has reasonable activity against early oocysts and lesser activity against late oocysts. We further demonstrated that caspar silencing alone is sufficient to induce a robust anti-P. falciparum response even in the relative absence of resident gut microbiota. Finally, we established the relevance of the Imd pathway components and regulated effectors TEP1, APL1, and LRIM1 in parasite infection intensity-dependent defense, thereby shedding light on the relevance of laboratory versus natural infection intensity models. Our results highlight the physiological considerations that are integral to a thoughtful implementation of Imd pathway manipulation in A. gambiae as part of an effort to limit the malaria transmission cycle, and they reveal a variety of previously unrecognized nuances in the Imd-directed immune response against P. falciparum.</description><subject>Animals</subject><subject>Anopheles</subject><subject>Anopheles - immunology</subject><subject>Anopheles - parasitology</subject><subject>Anopheles gambiae</subject><subject>Biology</subject><subject>Genomics</subject><subject>Health aspects</subject><subject>Immune response</subject><subject>Insect Proteins - immunology</subject><subject>Insect Vectors - immunology</subject><subject>Malaria</subject><subject>Malaria - immunology</subject><subject>Malaria, Falciparum - prevention &amp; control</subject><subject>Mosquitoes</subject><subject>Parasites</subject><subject>Physiological aspects</subject><subject>Plasmodium</subject><subject>Plasmodium falciparum</subject><subject>Plasmodium falciparum - immunology</subject><subject>Proteins</subject><subject>Real-Time Polymerase Chain Reaction</subject><subject>RNA Interference</subject><subject>Signal Transduction</subject><subject>Virulence (Microbiology)</subject><issn>1553-7374</issn><issn>1553-7366</issn><issn>1553-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVk9-P1CAQxxuj8c7T_8BoE1_Oh65QoJQXk83l1E0uavzxTChMd9m0pRaq7n8vve1druYeNCXpAJ_5wswwSfIcoxUmHL_Zu3HoVLPqexVWGKGcE_4gOcWMkSya9OEd-yR54v0eIYoJLh4nJ3lelIwifJrodef6HTTg001r0qi1-6UOaa10cINPVWdSqGs4zmwXxzSxbrICdN6GQ2agh85AFyIebPa5Ub51xo5tqq7Rp8mjWjUens3_s-T7u8tvFx-yq0_vNxfrq0zzAoUMs4ojKgjNMaoNK7EByoyucG2gKjCnQmuBOOXaKINLDiWpkSKk5oIzgwtylrw86vaN83LOj5c4LwUSMXYeic2RME7tZT_YVg0H6ZSV1wtu2Eo1BKsbkIphQKUuqngW5ahSZcFpzoBRjcqcQ9R6O582Vi0YHeMfVLMQXe50die37qckpBCCllHgfBYY3I8RfJCt9RqaRnXgxnhvlJcoFion_4LG4nKMphBf_YXen4iZ2qoYayyqi1fUk6hcE0QZYUKISK3uoeJnoLXadVDbuL5weL1wiEyA32GrRu_l5uuX_2A_Lll6ZPXgvB-gvk0zRnLqhpsg5dQNcu6G6PbibolunW6eP_kD9Z4FRw</recordid><startdate>20120601</startdate><enddate>20120601</enddate><creator>Garver, Lindsey S</creator><creator>Bahia, Ana C</creator><creator>Das, Suchismita</creator><creator>Souza-Neto, Jayme A</creator><creator>Shiao, Jessica</creator><creator>Dong, Yuemei</creator><creator>Dimopoulos, George</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>F1W</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>M7N</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20120601</creationdate><title>Anopheles Imd pathway factors and effectors in infection intensity-dependent anti-Plasmodium action</title><author>Garver, Lindsey S ; Bahia, Ana C ; Das, Suchismita ; Souza-Neto, Jayme A ; Shiao, Jessica ; Dong, Yuemei ; Dimopoulos, George</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c760t-15b704934210fd581de45dcb1fdeb61749cc90747cdad187e83f0a33f7975d163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Anopheles</topic><topic>Anopheles - immunology</topic><topic>Anopheles - parasitology</topic><topic>Anopheles gambiae</topic><topic>Biology</topic><topic>Genomics</topic><topic>Health aspects</topic><topic>Immune response</topic><topic>Insect Proteins - immunology</topic><topic>Insect Vectors - immunology</topic><topic>Malaria</topic><topic>Malaria - immunology</topic><topic>Malaria, Falciparum - prevention &amp; control</topic><topic>Mosquitoes</topic><topic>Parasites</topic><topic>Physiological aspects</topic><topic>Plasmodium</topic><topic>Plasmodium falciparum</topic><topic>Plasmodium falciparum - immunology</topic><topic>Proteins</topic><topic>Real-Time Polymerase Chain Reaction</topic><topic>RNA Interference</topic><topic>Signal Transduction</topic><topic>Virulence (Microbiology)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garver, Lindsey S</creatorcontrib><creatorcontrib>Bahia, Ana C</creatorcontrib><creatorcontrib>Das, Suchismita</creatorcontrib><creatorcontrib>Souza-Neto, Jayme A</creatorcontrib><creatorcontrib>Shiao, Jessica</creatorcontrib><creatorcontrib>Dong, Yuemei</creatorcontrib><creatorcontrib>Dimopoulos, George</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS pathogens</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garver, Lindsey S</au><au>Bahia, Ana C</au><au>Das, Suchismita</au><au>Souza-Neto, Jayme A</au><au>Shiao, Jessica</au><au>Dong, Yuemei</au><au>Dimopoulos, George</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anopheles Imd pathway factors and effectors in infection intensity-dependent anti-Plasmodium action</atitle><jtitle>PLoS pathogens</jtitle><addtitle>PLoS Pathog</addtitle><date>2012-06-01</date><risdate>2012</risdate><volume>8</volume><issue>6</issue><spage>e1002737</spage><epage>e1002737</epage><pages>e1002737-e1002737</pages><issn>1553-7374</issn><issn>1553-7366</issn><eissn>1553-7374</eissn><abstract>The Anopheles gambiae immune response against Plasmodium falciparum, an etiological agent of human malaria, has been identified as a source of potential anti-Plasmodium genes and mechanisms to be exploited in efforts to control the malaria transmission cycle. One such mechanism is the Imd pathway, a conserved immune signaling pathway that has potent anti-P. falciparum activity. Silencing the expression of caspar, a negative regulator of the Imd pathway, or over-expressing rel2, an Imd pathway-controlled NFkappaB transcription factor, confers a resistant phenotype on A. gambiae mosquitoes that involves an array of immune effector genes. However, unexplored features of this powerful mechanism that may be essential for the implementation of a malaria control strategy still remain. Using RNA interference to singly or dually silence caspar and other components of the Imd pathway, we have identified genes participating in the anti-Plasmodium signaling module regulated by Caspar, each of which represents a potential target to achieve over-activation of the pathway. We also determined that the Imd pathway is most potent against the parasite's ookinete stage, yet also has reasonable activity against early oocysts and lesser activity against late oocysts. We further demonstrated that caspar silencing alone is sufficient to induce a robust anti-P. falciparum response even in the relative absence of resident gut microbiota. Finally, we established the relevance of the Imd pathway components and regulated effectors TEP1, APL1, and LRIM1 in parasite infection intensity-dependent defense, thereby shedding light on the relevance of laboratory versus natural infection intensity models. Our results highlight the physiological considerations that are integral to a thoughtful implementation of Imd pathway manipulation in A. gambiae as part of an effort to limit the malaria transmission cycle, and they reveal a variety of previously unrecognized nuances in the Imd-directed immune response against P. falciparum.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22685401</pmid><doi>10.1371/journal.ppat.1002737</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7374
ispartof PLoS pathogens, 2012-06, Vol.8 (6), p.e1002737-e1002737
issn 1553-7374
1553-7366
1553-7374
language eng
recordid cdi_plos_journals_1289090417
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access; Public Library of Science (PLoS)
subjects Animals
Anopheles
Anopheles - immunology
Anopheles - parasitology
Anopheles gambiae
Biology
Genomics
Health aspects
Immune response
Insect Proteins - immunology
Insect Vectors - immunology
Malaria
Malaria - immunology
Malaria, Falciparum - prevention & control
Mosquitoes
Parasites
Physiological aspects
Plasmodium
Plasmodium falciparum
Plasmodium falciparum - immunology
Proteins
Real-Time Polymerase Chain Reaction
RNA Interference
Signal Transduction
Virulence (Microbiology)
title Anopheles Imd pathway factors and effectors in infection intensity-dependent anti-Plasmodium action
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T17%3A51%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anopheles%20Imd%20pathway%20factors%20and%20effectors%20in%20infection%20intensity-dependent%20anti-Plasmodium%20action&rft.jtitle=PLoS%20pathogens&rft.au=Garver,%20Lindsey%20S&rft.date=2012-06-01&rft.volume=8&rft.issue=6&rft.spage=e1002737&rft.epage=e1002737&rft.pages=e1002737-e1002737&rft.issn=1553-7374&rft.eissn=1553-7374&rft_id=info:doi/10.1371/journal.ppat.1002737&rft_dat=%3Cgale_plos_%3EA304535999%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1289090417&rft_id=info:pmid/22685401&rft_galeid=A304535999&rft_doaj_id=oai_doaj_org_article_a51e08c6bad1470ba867425e54c0827e&rfr_iscdi=true