Msb2 shedding protects Candida albicans against antimicrobial peptides

Msb2 is a sensor protein in the plasma membrane of fungi. In the human fungal pathogen C. albicans Msb2 signals via the Cek1 MAP kinase pathway to maintain cell wall integrity and allow filamentous growth. Msb2 doubly epitope-tagged in its large extracellular and small cytoplasmic domain was efficie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS pathogens 2012-02, Vol.8 (2), p.e1002501-e1002501
Hauptverfasser: Szafranski-Schneider, Eva, Swidergall, Marc, Cottier, Fabien, Tielker, Denis, Román, Elvira, Pla, Jesus, Ernst, Joachim F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1002501
container_issue 2
container_start_page e1002501
container_title PLoS pathogens
container_volume 8
creator Szafranski-Schneider, Eva
Swidergall, Marc
Cottier, Fabien
Tielker, Denis
Román, Elvira
Pla, Jesus
Ernst, Joachim F
description Msb2 is a sensor protein in the plasma membrane of fungi. In the human fungal pathogen C. albicans Msb2 signals via the Cek1 MAP kinase pathway to maintain cell wall integrity and allow filamentous growth. Msb2 doubly epitope-tagged in its large extracellular and small cytoplasmic domain was efficiently cleaved during liquid and surface growth and the extracellular domain was almost quantitatively released into the growth medium. Msb2 cleavage was independent of proteases Sap9, Sap10 and Kex2. Secreted Msb2 was highly O-glycosylated by protein mannosyltransferases including Pmt1 resulting in an apparent molecular mass of >400 kDa. Deletion analyses revealed that the transmembrane region is required for Msb2 function, while the large N-terminal and the small cytoplasmic region function to downregulate Msb2 signaling or, respectively, allow its induction by tunicamycin. Purified extracellular Msb2 domain protected fungal and bacterial cells effectively from antimicrobial peptides (AMPs) histatin-5 and LL-37. AMP inactivation was not due to degradation but depended on the quantity and length of the Msb2 glycofragment. C. albicans msb2 mutants were supersensitive to LL-37 but not histatin-5, suggesting that secreted rather than cell-associated Msb2 determines AMP protection. Thus, in addition to its sensor function Msb2 has a second activity because shedding of its glycofragment generates AMP quorum resistance.
doi_str_mv 10.1371/journal.ppat.1002501
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1289086953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A282068753</galeid><doaj_id>oai_doaj_org_article_7c0463aad2194feb810476ff11cef449</doaj_id><sourcerecordid>A282068753</sourcerecordid><originalsourceid>FETCH-LOGICAL-c660t-a9f4aa0432a3ee0ef1cc8a87c0582203c4825e71419b0bd1729e184fd01644cd3</originalsourceid><addsrcrecordid>eNqVkk1v1DAQhiMEoqXwDxBE4oA47OKxncS5IFUrCisVkPg4WxN_pF5l7RB7Efx7vN206qJekA-2xs-84xm_RfEcyBJYA283YTd5HJbjiGkJhNCKwIPiFKqKLRrW8Id3zifFkxg3hHBgUD8uTihl0HLOTouLT7GjZbwyWjvfl-MUklEpliv02mksceicQh9L7NH5mEr0yW2dmkLncChHMyanTXxaPLI4RPNs3s-KHxfvv68-Li6_fFivzi8Xqq5JWmBrOSLhjCIzhhgLSgkUjSKVoJQwxQWtTAMc2o50GhraGhDcagI150qzs-LlQXccQpTzCKIEKloi6rZimVgfCB1wI8fJbXH6IwM6eR0IUy9xSk4NRuayvGaImuZhWNMJILyprQVQxnLeZq13c7VdtzVaGZ8mHI5Ej2-8u5J9-CUZbYA0Igu8ngWm8HNnYpJbF5UZBvQm7KJsKUAuKepMvvqHvL-5meoxv995G3JZtdeU51RQUovmmlreQ-WlTf654I11OX6U8OYoITPJ_E497mKU629f_4P9fMzyA5vtEuNk7O3ogMi9iW-alHsTy9nEOe3F3bHfJt24lv0F78Pr_Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1289086953</pqid></control><display><type>article</type><title>Msb2 shedding protects Candida albicans against antimicrobial peptides</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Szafranski-Schneider, Eva ; Swidergall, Marc ; Cottier, Fabien ; Tielker, Denis ; Román, Elvira ; Pla, Jesus ; Ernst, Joachim F</creator><contributor>Cowen, Leah E.</contributor><creatorcontrib>Szafranski-Schneider, Eva ; Swidergall, Marc ; Cottier, Fabien ; Tielker, Denis ; Román, Elvira ; Pla, Jesus ; Ernst, Joachim F ; Cowen, Leah E.</creatorcontrib><description>Msb2 is a sensor protein in the plasma membrane of fungi. In the human fungal pathogen C. albicans Msb2 signals via the Cek1 MAP kinase pathway to maintain cell wall integrity and allow filamentous growth. Msb2 doubly epitope-tagged in its large extracellular and small cytoplasmic domain was efficiently cleaved during liquid and surface growth and the extracellular domain was almost quantitatively released into the growth medium. Msb2 cleavage was independent of proteases Sap9, Sap10 and Kex2. Secreted Msb2 was highly O-glycosylated by protein mannosyltransferases including Pmt1 resulting in an apparent molecular mass of &gt;400 kDa. Deletion analyses revealed that the transmembrane region is required for Msb2 function, while the large N-terminal and the small cytoplasmic region function to downregulate Msb2 signaling or, respectively, allow its induction by tunicamycin. Purified extracellular Msb2 domain protected fungal and bacterial cells effectively from antimicrobial peptides (AMPs) histatin-5 and LL-37. AMP inactivation was not due to degradation but depended on the quantity and length of the Msb2 glycofragment. C. albicans msb2 mutants were supersensitive to LL-37 but not histatin-5, suggesting that secreted rather than cell-associated Msb2 determines AMP protection. Thus, in addition to its sensor function Msb2 has a second activity because shedding of its glycofragment generates AMP quorum resistance.</description><identifier>ISSN: 1553-7374</identifier><identifier>ISSN: 1553-7366</identifier><identifier>EISSN: 1553-7374</identifier><identifier>DOI: 10.1371/journal.ppat.1002501</identifier><identifier>PMID: 22319443</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Anti-infective agents ; Antimicrobial Cationic Peptides - antagonists &amp; inhibitors ; Antimicrobial Cationic Peptides - pharmacology ; Biology ; Candida albicans ; Candida albicans - genetics ; Candida albicans - metabolism ; Candida albicans - pathogenicity ; Cell Wall - metabolism ; Fungal Proteins - genetics ; Fungal Proteins - metabolism ; Fungi ; Gene Expression Regulation, Fungal ; Health aspects ; Histatins - antagonists &amp; inhibitors ; Histatins - pharmacology ; Intracellular Signaling Peptides and Proteins - metabolism ; Kinases ; MAP Kinase Signaling System ; Medicine ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Mitogen-Activated Protein Kinases - metabolism ; Peptide Hydrolases ; Peptides ; Physiological aspects ; Proteins ; Saccharomyces cerevisiae Proteins - metabolism ; Tunicamycin - pharmacology</subject><ispartof>PLoS pathogens, 2012-02, Vol.8 (2), p.e1002501-e1002501</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Szafranski-Schneider et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Szafranski-Schneider E, Swidergall M, Cottier F, Tielker D, Román E, et al. (2012) Msb2 Shedding Protects Candida albicans against Antimicrobial Peptides. PLoS Pathog 8(2): e1002501. doi:10.1371/journal.ppat.1002501</rights><rights>Szafranski-Schneider et al. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c660t-a9f4aa0432a3ee0ef1cc8a87c0582203c4825e71419b0bd1729e184fd01644cd3</citedby><cites>FETCH-LOGICAL-c660t-a9f4aa0432a3ee0ef1cc8a87c0582203c4825e71419b0bd1729e184fd01644cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3271078/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3271078/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22319443$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Cowen, Leah E.</contributor><creatorcontrib>Szafranski-Schneider, Eva</creatorcontrib><creatorcontrib>Swidergall, Marc</creatorcontrib><creatorcontrib>Cottier, Fabien</creatorcontrib><creatorcontrib>Tielker, Denis</creatorcontrib><creatorcontrib>Román, Elvira</creatorcontrib><creatorcontrib>Pla, Jesus</creatorcontrib><creatorcontrib>Ernst, Joachim F</creatorcontrib><title>Msb2 shedding protects Candida albicans against antimicrobial peptides</title><title>PLoS pathogens</title><addtitle>PLoS Pathog</addtitle><description>Msb2 is a sensor protein in the plasma membrane of fungi. In the human fungal pathogen C. albicans Msb2 signals via the Cek1 MAP kinase pathway to maintain cell wall integrity and allow filamentous growth. Msb2 doubly epitope-tagged in its large extracellular and small cytoplasmic domain was efficiently cleaved during liquid and surface growth and the extracellular domain was almost quantitatively released into the growth medium. Msb2 cleavage was independent of proteases Sap9, Sap10 and Kex2. Secreted Msb2 was highly O-glycosylated by protein mannosyltransferases including Pmt1 resulting in an apparent molecular mass of &gt;400 kDa. Deletion analyses revealed that the transmembrane region is required for Msb2 function, while the large N-terminal and the small cytoplasmic region function to downregulate Msb2 signaling or, respectively, allow its induction by tunicamycin. Purified extracellular Msb2 domain protected fungal and bacterial cells effectively from antimicrobial peptides (AMPs) histatin-5 and LL-37. AMP inactivation was not due to degradation but depended on the quantity and length of the Msb2 glycofragment. C. albicans msb2 mutants were supersensitive to LL-37 but not histatin-5, suggesting that secreted rather than cell-associated Msb2 determines AMP protection. Thus, in addition to its sensor function Msb2 has a second activity because shedding of its glycofragment generates AMP quorum resistance.</description><subject>Anti-infective agents</subject><subject>Antimicrobial Cationic Peptides - antagonists &amp; inhibitors</subject><subject>Antimicrobial Cationic Peptides - pharmacology</subject><subject>Biology</subject><subject>Candida albicans</subject><subject>Candida albicans - genetics</subject><subject>Candida albicans - metabolism</subject><subject>Candida albicans - pathogenicity</subject><subject>Cell Wall - metabolism</subject><subject>Fungal Proteins - genetics</subject><subject>Fungal Proteins - metabolism</subject><subject>Fungi</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Health aspects</subject><subject>Histatins - antagonists &amp; inhibitors</subject><subject>Histatins - pharmacology</subject><subject>Intracellular Signaling Peptides and Proteins - metabolism</subject><subject>Kinases</subject><subject>MAP Kinase Signaling System</subject><subject>Medicine</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Mitogen-Activated Protein Kinases - metabolism</subject><subject>Peptide Hydrolases</subject><subject>Peptides</subject><subject>Physiological aspects</subject><subject>Proteins</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Tunicamycin - pharmacology</subject><issn>1553-7374</issn><issn>1553-7366</issn><issn>1553-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVkk1v1DAQhiMEoqXwDxBE4oA47OKxncS5IFUrCisVkPg4WxN_pF5l7RB7Efx7vN206qJekA-2xs-84xm_RfEcyBJYA283YTd5HJbjiGkJhNCKwIPiFKqKLRrW8Id3zifFkxg3hHBgUD8uTihl0HLOTouLT7GjZbwyWjvfl-MUklEpliv02mksceicQh9L7NH5mEr0yW2dmkLncChHMyanTXxaPLI4RPNs3s-KHxfvv68-Li6_fFivzi8Xqq5JWmBrOSLhjCIzhhgLSgkUjSKVoJQwxQWtTAMc2o50GhraGhDcagI150qzs-LlQXccQpTzCKIEKloi6rZimVgfCB1wI8fJbXH6IwM6eR0IUy9xSk4NRuayvGaImuZhWNMJILyprQVQxnLeZq13c7VdtzVaGZ8mHI5Ej2-8u5J9-CUZbYA0Igu8ngWm8HNnYpJbF5UZBvQm7KJsKUAuKepMvvqHvL-5meoxv995G3JZtdeU51RQUovmmlreQ-WlTf654I11OX6U8OYoITPJ_E497mKU629f_4P9fMzyA5vtEuNk7O3ogMi9iW-alHsTy9nEOe3F3bHfJt24lv0F78Pr_Q</recordid><startdate>20120201</startdate><enddate>20120201</enddate><creator>Szafranski-Schneider, Eva</creator><creator>Swidergall, Marc</creator><creator>Cottier, Fabien</creator><creator>Tielker, Denis</creator><creator>Román, Elvira</creator><creator>Pla, Jesus</creator><creator>Ernst, Joachim F</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20120201</creationdate><title>Msb2 shedding protects Candida albicans against antimicrobial peptides</title><author>Szafranski-Schneider, Eva ; Swidergall, Marc ; Cottier, Fabien ; Tielker, Denis ; Román, Elvira ; Pla, Jesus ; Ernst, Joachim F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c660t-a9f4aa0432a3ee0ef1cc8a87c0582203c4825e71419b0bd1729e184fd01644cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Anti-infective agents</topic><topic>Antimicrobial Cationic Peptides - antagonists &amp; inhibitors</topic><topic>Antimicrobial Cationic Peptides - pharmacology</topic><topic>Biology</topic><topic>Candida albicans</topic><topic>Candida albicans - genetics</topic><topic>Candida albicans - metabolism</topic><topic>Candida albicans - pathogenicity</topic><topic>Cell Wall - metabolism</topic><topic>Fungal Proteins - genetics</topic><topic>Fungal Proteins - metabolism</topic><topic>Fungi</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Health aspects</topic><topic>Histatins - antagonists &amp; inhibitors</topic><topic>Histatins - pharmacology</topic><topic>Intracellular Signaling Peptides and Proteins - metabolism</topic><topic>Kinases</topic><topic>MAP Kinase Signaling System</topic><topic>Medicine</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Mitogen-Activated Protein Kinases - metabolism</topic><topic>Peptide Hydrolases</topic><topic>Peptides</topic><topic>Physiological aspects</topic><topic>Proteins</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Tunicamycin - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Szafranski-Schneider, Eva</creatorcontrib><creatorcontrib>Swidergall, Marc</creatorcontrib><creatorcontrib>Cottier, Fabien</creatorcontrib><creatorcontrib>Tielker, Denis</creatorcontrib><creatorcontrib>Román, Elvira</creatorcontrib><creatorcontrib>Pla, Jesus</creatorcontrib><creatorcontrib>Ernst, Joachim F</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS pathogens</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Szafranski-Schneider, Eva</au><au>Swidergall, Marc</au><au>Cottier, Fabien</au><au>Tielker, Denis</au><au>Román, Elvira</au><au>Pla, Jesus</au><au>Ernst, Joachim F</au><au>Cowen, Leah E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Msb2 shedding protects Candida albicans against antimicrobial peptides</atitle><jtitle>PLoS pathogens</jtitle><addtitle>PLoS Pathog</addtitle><date>2012-02-01</date><risdate>2012</risdate><volume>8</volume><issue>2</issue><spage>e1002501</spage><epage>e1002501</epage><pages>e1002501-e1002501</pages><issn>1553-7374</issn><issn>1553-7366</issn><eissn>1553-7374</eissn><abstract>Msb2 is a sensor protein in the plasma membrane of fungi. In the human fungal pathogen C. albicans Msb2 signals via the Cek1 MAP kinase pathway to maintain cell wall integrity and allow filamentous growth. Msb2 doubly epitope-tagged in its large extracellular and small cytoplasmic domain was efficiently cleaved during liquid and surface growth and the extracellular domain was almost quantitatively released into the growth medium. Msb2 cleavage was independent of proteases Sap9, Sap10 and Kex2. Secreted Msb2 was highly O-glycosylated by protein mannosyltransferases including Pmt1 resulting in an apparent molecular mass of &gt;400 kDa. Deletion analyses revealed that the transmembrane region is required for Msb2 function, while the large N-terminal and the small cytoplasmic region function to downregulate Msb2 signaling or, respectively, allow its induction by tunicamycin. Purified extracellular Msb2 domain protected fungal and bacterial cells effectively from antimicrobial peptides (AMPs) histatin-5 and LL-37. AMP inactivation was not due to degradation but depended on the quantity and length of the Msb2 glycofragment. C. albicans msb2 mutants were supersensitive to LL-37 but not histatin-5, suggesting that secreted rather than cell-associated Msb2 determines AMP protection. Thus, in addition to its sensor function Msb2 has a second activity because shedding of its glycofragment generates AMP quorum resistance.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22319443</pmid><doi>10.1371/journal.ppat.1002501</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7374
ispartof PLoS pathogens, 2012-02, Vol.8 (2), p.e1002501-e1002501
issn 1553-7374
1553-7366
1553-7374
language eng
recordid cdi_plos_journals_1289086953
source MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central Open Access; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Anti-infective agents
Antimicrobial Cationic Peptides - antagonists & inhibitors
Antimicrobial Cationic Peptides - pharmacology
Biology
Candida albicans
Candida albicans - genetics
Candida albicans - metabolism
Candida albicans - pathogenicity
Cell Wall - metabolism
Fungal Proteins - genetics
Fungal Proteins - metabolism
Fungi
Gene Expression Regulation, Fungal
Health aspects
Histatins - antagonists & inhibitors
Histatins - pharmacology
Intracellular Signaling Peptides and Proteins - metabolism
Kinases
MAP Kinase Signaling System
Medicine
Membrane Proteins - genetics
Membrane Proteins - metabolism
Mitogen-Activated Protein Kinases - metabolism
Peptide Hydrolases
Peptides
Physiological aspects
Proteins
Saccharomyces cerevisiae Proteins - metabolism
Tunicamycin - pharmacology
title Msb2 shedding protects Candida albicans against antimicrobial peptides
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T16%3A36%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Msb2%20shedding%20protects%20Candida%20albicans%20against%20antimicrobial%20peptides&rft.jtitle=PLoS%20pathogens&rft.au=Szafranski-Schneider,%20Eva&rft.date=2012-02-01&rft.volume=8&rft.issue=2&rft.spage=e1002501&rft.epage=e1002501&rft.pages=e1002501-e1002501&rft.issn=1553-7374&rft.eissn=1553-7374&rft_id=info:doi/10.1371/journal.ppat.1002501&rft_dat=%3Cgale_plos_%3EA282068753%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1289086953&rft_id=info:pmid/22319443&rft_galeid=A282068753&rft_doaj_id=oai_doaj_org_article_7c0463aad2194feb810476ff11cef449&rfr_iscdi=true