Msb2 shedding protects Candida albicans against antimicrobial peptides
Msb2 is a sensor protein in the plasma membrane of fungi. In the human fungal pathogen C. albicans Msb2 signals via the Cek1 MAP kinase pathway to maintain cell wall integrity and allow filamentous growth. Msb2 doubly epitope-tagged in its large extracellular and small cytoplasmic domain was efficie...
Gespeichert in:
Veröffentlicht in: | PLoS pathogens 2012-02, Vol.8 (2), p.e1002501-e1002501 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1002501 |
---|---|
container_issue | 2 |
container_start_page | e1002501 |
container_title | PLoS pathogens |
container_volume | 8 |
creator | Szafranski-Schneider, Eva Swidergall, Marc Cottier, Fabien Tielker, Denis Román, Elvira Pla, Jesus Ernst, Joachim F |
description | Msb2 is a sensor protein in the plasma membrane of fungi. In the human fungal pathogen C. albicans Msb2 signals via the Cek1 MAP kinase pathway to maintain cell wall integrity and allow filamentous growth. Msb2 doubly epitope-tagged in its large extracellular and small cytoplasmic domain was efficiently cleaved during liquid and surface growth and the extracellular domain was almost quantitatively released into the growth medium. Msb2 cleavage was independent of proteases Sap9, Sap10 and Kex2. Secreted Msb2 was highly O-glycosylated by protein mannosyltransferases including Pmt1 resulting in an apparent molecular mass of >400 kDa. Deletion analyses revealed that the transmembrane region is required for Msb2 function, while the large N-terminal and the small cytoplasmic region function to downregulate Msb2 signaling or, respectively, allow its induction by tunicamycin. Purified extracellular Msb2 domain protected fungal and bacterial cells effectively from antimicrobial peptides (AMPs) histatin-5 and LL-37. AMP inactivation was not due to degradation but depended on the quantity and length of the Msb2 glycofragment. C. albicans msb2 mutants were supersensitive to LL-37 but not histatin-5, suggesting that secreted rather than cell-associated Msb2 determines AMP protection. Thus, in addition to its sensor function Msb2 has a second activity because shedding of its glycofragment generates AMP quorum resistance. |
doi_str_mv | 10.1371/journal.ppat.1002501 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1289086953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A282068753</galeid><doaj_id>oai_doaj_org_article_7c0463aad2194feb810476ff11cef449</doaj_id><sourcerecordid>A282068753</sourcerecordid><originalsourceid>FETCH-LOGICAL-c660t-a9f4aa0432a3ee0ef1cc8a87c0582203c4825e71419b0bd1729e184fd01644cd3</originalsourceid><addsrcrecordid>eNqVkk1v1DAQhiMEoqXwDxBE4oA47OKxncS5IFUrCisVkPg4WxN_pF5l7RB7Efx7vN206qJekA-2xs-84xm_RfEcyBJYA283YTd5HJbjiGkJhNCKwIPiFKqKLRrW8Id3zifFkxg3hHBgUD8uTihl0HLOTouLT7GjZbwyWjvfl-MUklEpliv02mksceicQh9L7NH5mEr0yW2dmkLncChHMyanTXxaPLI4RPNs3s-KHxfvv68-Li6_fFivzi8Xqq5JWmBrOSLhjCIzhhgLSgkUjSKVoJQwxQWtTAMc2o50GhraGhDcagI150qzs-LlQXccQpTzCKIEKloi6rZimVgfCB1wI8fJbXH6IwM6eR0IUy9xSk4NRuayvGaImuZhWNMJILyprQVQxnLeZq13c7VdtzVaGZ8mHI5Ej2-8u5J9-CUZbYA0Igu8ngWm8HNnYpJbF5UZBvQm7KJsKUAuKepMvvqHvL-5meoxv995G3JZtdeU51RQUovmmlreQ-WlTf654I11OX6U8OYoITPJ_E497mKU629f_4P9fMzyA5vtEuNk7O3ogMi9iW-alHsTy9nEOe3F3bHfJt24lv0F78Pr_Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1289086953</pqid></control><display><type>article</type><title>Msb2 shedding protects Candida albicans against antimicrobial peptides</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Szafranski-Schneider, Eva ; Swidergall, Marc ; Cottier, Fabien ; Tielker, Denis ; Román, Elvira ; Pla, Jesus ; Ernst, Joachim F</creator><contributor>Cowen, Leah E.</contributor><creatorcontrib>Szafranski-Schneider, Eva ; Swidergall, Marc ; Cottier, Fabien ; Tielker, Denis ; Román, Elvira ; Pla, Jesus ; Ernst, Joachim F ; Cowen, Leah E.</creatorcontrib><description>Msb2 is a sensor protein in the plasma membrane of fungi. In the human fungal pathogen C. albicans Msb2 signals via the Cek1 MAP kinase pathway to maintain cell wall integrity and allow filamentous growth. Msb2 doubly epitope-tagged in its large extracellular and small cytoplasmic domain was efficiently cleaved during liquid and surface growth and the extracellular domain was almost quantitatively released into the growth medium. Msb2 cleavage was independent of proteases Sap9, Sap10 and Kex2. Secreted Msb2 was highly O-glycosylated by protein mannosyltransferases including Pmt1 resulting in an apparent molecular mass of >400 kDa. Deletion analyses revealed that the transmembrane region is required for Msb2 function, while the large N-terminal and the small cytoplasmic region function to downregulate Msb2 signaling or, respectively, allow its induction by tunicamycin. Purified extracellular Msb2 domain protected fungal and bacterial cells effectively from antimicrobial peptides (AMPs) histatin-5 and LL-37. AMP inactivation was not due to degradation but depended on the quantity and length of the Msb2 glycofragment. C. albicans msb2 mutants were supersensitive to LL-37 but not histatin-5, suggesting that secreted rather than cell-associated Msb2 determines AMP protection. Thus, in addition to its sensor function Msb2 has a second activity because shedding of its glycofragment generates AMP quorum resistance.</description><identifier>ISSN: 1553-7374</identifier><identifier>ISSN: 1553-7366</identifier><identifier>EISSN: 1553-7374</identifier><identifier>DOI: 10.1371/journal.ppat.1002501</identifier><identifier>PMID: 22319443</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Anti-infective agents ; Antimicrobial Cationic Peptides - antagonists & inhibitors ; Antimicrobial Cationic Peptides - pharmacology ; Biology ; Candida albicans ; Candida albicans - genetics ; Candida albicans - metabolism ; Candida albicans - pathogenicity ; Cell Wall - metabolism ; Fungal Proteins - genetics ; Fungal Proteins - metabolism ; Fungi ; Gene Expression Regulation, Fungal ; Health aspects ; Histatins - antagonists & inhibitors ; Histatins - pharmacology ; Intracellular Signaling Peptides and Proteins - metabolism ; Kinases ; MAP Kinase Signaling System ; Medicine ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Mitogen-Activated Protein Kinases - metabolism ; Peptide Hydrolases ; Peptides ; Physiological aspects ; Proteins ; Saccharomyces cerevisiae Proteins - metabolism ; Tunicamycin - pharmacology</subject><ispartof>PLoS pathogens, 2012-02, Vol.8 (2), p.e1002501-e1002501</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Szafranski-Schneider et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Szafranski-Schneider E, Swidergall M, Cottier F, Tielker D, Román E, et al. (2012) Msb2 Shedding Protects Candida albicans against Antimicrobial Peptides. PLoS Pathog 8(2): e1002501. doi:10.1371/journal.ppat.1002501</rights><rights>Szafranski-Schneider et al. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c660t-a9f4aa0432a3ee0ef1cc8a87c0582203c4825e71419b0bd1729e184fd01644cd3</citedby><cites>FETCH-LOGICAL-c660t-a9f4aa0432a3ee0ef1cc8a87c0582203c4825e71419b0bd1729e184fd01644cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3271078/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3271078/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22319443$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Cowen, Leah E.</contributor><creatorcontrib>Szafranski-Schneider, Eva</creatorcontrib><creatorcontrib>Swidergall, Marc</creatorcontrib><creatorcontrib>Cottier, Fabien</creatorcontrib><creatorcontrib>Tielker, Denis</creatorcontrib><creatorcontrib>Román, Elvira</creatorcontrib><creatorcontrib>Pla, Jesus</creatorcontrib><creatorcontrib>Ernst, Joachim F</creatorcontrib><title>Msb2 shedding protects Candida albicans against antimicrobial peptides</title><title>PLoS pathogens</title><addtitle>PLoS Pathog</addtitle><description>Msb2 is a sensor protein in the plasma membrane of fungi. In the human fungal pathogen C. albicans Msb2 signals via the Cek1 MAP kinase pathway to maintain cell wall integrity and allow filamentous growth. Msb2 doubly epitope-tagged in its large extracellular and small cytoplasmic domain was efficiently cleaved during liquid and surface growth and the extracellular domain was almost quantitatively released into the growth medium. Msb2 cleavage was independent of proteases Sap9, Sap10 and Kex2. Secreted Msb2 was highly O-glycosylated by protein mannosyltransferases including Pmt1 resulting in an apparent molecular mass of >400 kDa. Deletion analyses revealed that the transmembrane region is required for Msb2 function, while the large N-terminal and the small cytoplasmic region function to downregulate Msb2 signaling or, respectively, allow its induction by tunicamycin. Purified extracellular Msb2 domain protected fungal and bacterial cells effectively from antimicrobial peptides (AMPs) histatin-5 and LL-37. AMP inactivation was not due to degradation but depended on the quantity and length of the Msb2 glycofragment. C. albicans msb2 mutants were supersensitive to LL-37 but not histatin-5, suggesting that secreted rather than cell-associated Msb2 determines AMP protection. Thus, in addition to its sensor function Msb2 has a second activity because shedding of its glycofragment generates AMP quorum resistance.</description><subject>Anti-infective agents</subject><subject>Antimicrobial Cationic Peptides - antagonists & inhibitors</subject><subject>Antimicrobial Cationic Peptides - pharmacology</subject><subject>Biology</subject><subject>Candida albicans</subject><subject>Candida albicans - genetics</subject><subject>Candida albicans - metabolism</subject><subject>Candida albicans - pathogenicity</subject><subject>Cell Wall - metabolism</subject><subject>Fungal Proteins - genetics</subject><subject>Fungal Proteins - metabolism</subject><subject>Fungi</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Health aspects</subject><subject>Histatins - antagonists & inhibitors</subject><subject>Histatins - pharmacology</subject><subject>Intracellular Signaling Peptides and Proteins - metabolism</subject><subject>Kinases</subject><subject>MAP Kinase Signaling System</subject><subject>Medicine</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Mitogen-Activated Protein Kinases - metabolism</subject><subject>Peptide Hydrolases</subject><subject>Peptides</subject><subject>Physiological aspects</subject><subject>Proteins</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Tunicamycin - pharmacology</subject><issn>1553-7374</issn><issn>1553-7366</issn><issn>1553-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVkk1v1DAQhiMEoqXwDxBE4oA47OKxncS5IFUrCisVkPg4WxN_pF5l7RB7Efx7vN206qJekA-2xs-84xm_RfEcyBJYA283YTd5HJbjiGkJhNCKwIPiFKqKLRrW8Id3zifFkxg3hHBgUD8uTihl0HLOTouLT7GjZbwyWjvfl-MUklEpliv02mksceicQh9L7NH5mEr0yW2dmkLncChHMyanTXxaPLI4RPNs3s-KHxfvv68-Li6_fFivzi8Xqq5JWmBrOSLhjCIzhhgLSgkUjSKVoJQwxQWtTAMc2o50GhraGhDcagI150qzs-LlQXccQpTzCKIEKloi6rZimVgfCB1wI8fJbXH6IwM6eR0IUy9xSk4NRuayvGaImuZhWNMJILyprQVQxnLeZq13c7VdtzVaGZ8mHI5Ej2-8u5J9-CUZbYA0Igu8ngWm8HNnYpJbF5UZBvQm7KJsKUAuKepMvvqHvL-5meoxv995G3JZtdeU51RQUovmmlreQ-WlTf654I11OX6U8OYoITPJ_E497mKU629f_4P9fMzyA5vtEuNk7O3ogMi9iW-alHsTy9nEOe3F3bHfJt24lv0F78Pr_Q</recordid><startdate>20120201</startdate><enddate>20120201</enddate><creator>Szafranski-Schneider, Eva</creator><creator>Swidergall, Marc</creator><creator>Cottier, Fabien</creator><creator>Tielker, Denis</creator><creator>Román, Elvira</creator><creator>Pla, Jesus</creator><creator>Ernst, Joachim F</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20120201</creationdate><title>Msb2 shedding protects Candida albicans against antimicrobial peptides</title><author>Szafranski-Schneider, Eva ; Swidergall, Marc ; Cottier, Fabien ; Tielker, Denis ; Román, Elvira ; Pla, Jesus ; Ernst, Joachim F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c660t-a9f4aa0432a3ee0ef1cc8a87c0582203c4825e71419b0bd1729e184fd01644cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Anti-infective agents</topic><topic>Antimicrobial Cationic Peptides - antagonists & inhibitors</topic><topic>Antimicrobial Cationic Peptides - pharmacology</topic><topic>Biology</topic><topic>Candida albicans</topic><topic>Candida albicans - genetics</topic><topic>Candida albicans - metabolism</topic><topic>Candida albicans - pathogenicity</topic><topic>Cell Wall - metabolism</topic><topic>Fungal Proteins - genetics</topic><topic>Fungal Proteins - metabolism</topic><topic>Fungi</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Health aspects</topic><topic>Histatins - antagonists & inhibitors</topic><topic>Histatins - pharmacology</topic><topic>Intracellular Signaling Peptides and Proteins - metabolism</topic><topic>Kinases</topic><topic>MAP Kinase Signaling System</topic><topic>Medicine</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Mitogen-Activated Protein Kinases - metabolism</topic><topic>Peptide Hydrolases</topic><topic>Peptides</topic><topic>Physiological aspects</topic><topic>Proteins</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Tunicamycin - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Szafranski-Schneider, Eva</creatorcontrib><creatorcontrib>Swidergall, Marc</creatorcontrib><creatorcontrib>Cottier, Fabien</creatorcontrib><creatorcontrib>Tielker, Denis</creatorcontrib><creatorcontrib>Román, Elvira</creatorcontrib><creatorcontrib>Pla, Jesus</creatorcontrib><creatorcontrib>Ernst, Joachim F</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS pathogens</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Szafranski-Schneider, Eva</au><au>Swidergall, Marc</au><au>Cottier, Fabien</au><au>Tielker, Denis</au><au>Román, Elvira</au><au>Pla, Jesus</au><au>Ernst, Joachim F</au><au>Cowen, Leah E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Msb2 shedding protects Candida albicans against antimicrobial peptides</atitle><jtitle>PLoS pathogens</jtitle><addtitle>PLoS Pathog</addtitle><date>2012-02-01</date><risdate>2012</risdate><volume>8</volume><issue>2</issue><spage>e1002501</spage><epage>e1002501</epage><pages>e1002501-e1002501</pages><issn>1553-7374</issn><issn>1553-7366</issn><eissn>1553-7374</eissn><abstract>Msb2 is a sensor protein in the plasma membrane of fungi. In the human fungal pathogen C. albicans Msb2 signals via the Cek1 MAP kinase pathway to maintain cell wall integrity and allow filamentous growth. Msb2 doubly epitope-tagged in its large extracellular and small cytoplasmic domain was efficiently cleaved during liquid and surface growth and the extracellular domain was almost quantitatively released into the growth medium. Msb2 cleavage was independent of proteases Sap9, Sap10 and Kex2. Secreted Msb2 was highly O-glycosylated by protein mannosyltransferases including Pmt1 resulting in an apparent molecular mass of >400 kDa. Deletion analyses revealed that the transmembrane region is required for Msb2 function, while the large N-terminal and the small cytoplasmic region function to downregulate Msb2 signaling or, respectively, allow its induction by tunicamycin. Purified extracellular Msb2 domain protected fungal and bacterial cells effectively from antimicrobial peptides (AMPs) histatin-5 and LL-37. AMP inactivation was not due to degradation but depended on the quantity and length of the Msb2 glycofragment. C. albicans msb2 mutants were supersensitive to LL-37 but not histatin-5, suggesting that secreted rather than cell-associated Msb2 determines AMP protection. Thus, in addition to its sensor function Msb2 has a second activity because shedding of its glycofragment generates AMP quorum resistance.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22319443</pmid><doi>10.1371/journal.ppat.1002501</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7374 |
ispartof | PLoS pathogens, 2012-02, Vol.8 (2), p.e1002501-e1002501 |
issn | 1553-7374 1553-7366 1553-7374 |
language | eng |
recordid | cdi_plos_journals_1289086953 |
source | MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central Open Access; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Anti-infective agents Antimicrobial Cationic Peptides - antagonists & inhibitors Antimicrobial Cationic Peptides - pharmacology Biology Candida albicans Candida albicans - genetics Candida albicans - metabolism Candida albicans - pathogenicity Cell Wall - metabolism Fungal Proteins - genetics Fungal Proteins - metabolism Fungi Gene Expression Regulation, Fungal Health aspects Histatins - antagonists & inhibitors Histatins - pharmacology Intracellular Signaling Peptides and Proteins - metabolism Kinases MAP Kinase Signaling System Medicine Membrane Proteins - genetics Membrane Proteins - metabolism Mitogen-Activated Protein Kinases - metabolism Peptide Hydrolases Peptides Physiological aspects Proteins Saccharomyces cerevisiae Proteins - metabolism Tunicamycin - pharmacology |
title | Msb2 shedding protects Candida albicans against antimicrobial peptides |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T16%3A36%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Msb2%20shedding%20protects%20Candida%20albicans%20against%20antimicrobial%20peptides&rft.jtitle=PLoS%20pathogens&rft.au=Szafranski-Schneider,%20Eva&rft.date=2012-02-01&rft.volume=8&rft.issue=2&rft.spage=e1002501&rft.epage=e1002501&rft.pages=e1002501-e1002501&rft.issn=1553-7374&rft.eissn=1553-7374&rft_id=info:doi/10.1371/journal.ppat.1002501&rft_dat=%3Cgale_plos_%3EA282068753%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1289086953&rft_id=info:pmid/22319443&rft_galeid=A282068753&rft_doaj_id=oai_doaj_org_article_7c0463aad2194feb810476ff11cef449&rfr_iscdi=true |