EBV latency types adopt alternative chromatin conformations

Epstein-Barr Virus (EBV) can establish latent infections with distinct gene expression patterns referred to as latency types. These different latency types are epigenetically stable and correspond to different promoter utilization. Here we explore the three-dimensional conformations of the EBV genom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS pathogens 2011-07, Vol.7 (7), p.e1002180-e1002180
Hauptverfasser: Tempera, Italo, Klichinsky, Michael, Lieberman, Paul M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1002180
container_issue 7
container_start_page e1002180
container_title PLoS pathogens
container_volume 7
creator Tempera, Italo
Klichinsky, Michael
Lieberman, Paul M
description Epstein-Barr Virus (EBV) can establish latent infections with distinct gene expression patterns referred to as latency types. These different latency types are epigenetically stable and correspond to different promoter utilization. Here we explore the three-dimensional conformations of the EBV genome in different latency types. We employed Chromosome Conformation Capture (3C) assay to investigate chromatin loop formation between the OriP enhancer and the promoters that determine type I (Qp) or type III (Cp) gene expression. We show that OriP is in close physical proximity to Qp in type I latency, and to Cp in type III latency. The cellular chromatin insulator and boundary factor CTCF was implicated in EBV chromatin loop formation. Combining 3C and ChIP assays we found that CTCF is physically associated with OriP-Qp loop formation in type I and OriP-Cp loop formation in type III latency. Mutations in the CTCF binding site located at Qp disrupt loop formation between Qp and OriP, and lead to the activation of Cp transcription. Mutation of the CTCF binding site at Cp, as well as siRNA depletion of CTCF eliminates both OriP-associated loops, indicating that CTCF plays an integral role in loop formation. These data indicate that epigenetically stable EBV latency types adopt distinct chromatin architectures that depend on CTCF and mediate alternative promoter targeting by the OriP enhancer.
doi_str_mv 10.1371/journal.ppat.1002180
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1289083590</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A263659808</galeid><doaj_id>oai_doaj_org_article_4ff3a4273c374e3e86f1d2971f398db9</doaj_id><sourcerecordid>A263659808</sourcerecordid><originalsourceid>FETCH-LOGICAL-c660t-d179639d28b7ab0a568e3188144d599c94ed6ee6611b38e0a59c08d3632a7f2d3</originalsourceid><addsrcrecordid>eNqVkktv1DAQxy0Eou3CN0AQiUPFYRc7TvxQJaRSFVipAonX1XLsyTarJA62U7HfHi-bVg3qBfng0fg3__E8EHpB8IpQTt5u3eh73a6GQccVwTgnAj9Cx6Qs6ZJTXjy-Zx-hkxC2GBeEEvYUHSU2l7Tkx-js8v3PrNURerPL4m6AkGnrhpjpNkLSj80NZObauy6ZfWZcXzu_t10fnqEntW4DPJ_uBfrx4fL7xafl1ZeP64vzq6VhDMelJVwyKm0uKq4rrEsmgBIhSFHYUkojC7AMgDFCKiogAdJgYSmjueZ1bukCvTroDq0Laqo7KJILiQUtJU7E-kBYp7dq8E2n_U453ai_Duc3SvvYmBZUUddUFzmnJvUFKAhWE5tLTmoqha1k0no3ZRurDqyBPnrdzkTnL31zrTbuRlFSlFyWSeB0EvDu1wghqq4JBtpW9-DGoISgGAvM8kS-_od8uLiJ2uj0_yYNIKU1e011njPKSikSuUCrB6h0LHRNGhvUTfLPAt7MAhIT4Xfc6DEEtf729T_Yz3O2OLDGuxA81HetI1jtN_e2SLXfXDVtbgp7eb_td0G3q0r_AJQq6BY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1289083590</pqid></control><display><type>article</type><title>EBV latency types adopt alternative chromatin conformations</title><source>PubMed (Medline)</source><source>MEDLINE</source><source>Public Library of Science</source><source>DOAJ Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><source>PubMed Central Open Access</source><creator>Tempera, Italo ; Klichinsky, Michael ; Lieberman, Paul M</creator><creatorcontrib>Tempera, Italo ; Klichinsky, Michael ; Lieberman, Paul M</creatorcontrib><description>Epstein-Barr Virus (EBV) can establish latent infections with distinct gene expression patterns referred to as latency types. These different latency types are epigenetically stable and correspond to different promoter utilization. Here we explore the three-dimensional conformations of the EBV genome in different latency types. We employed Chromosome Conformation Capture (3C) assay to investigate chromatin loop formation between the OriP enhancer and the promoters that determine type I (Qp) or type III (Cp) gene expression. We show that OriP is in close physical proximity to Qp in type I latency, and to Cp in type III latency. The cellular chromatin insulator and boundary factor CTCF was implicated in EBV chromatin loop formation. Combining 3C and ChIP assays we found that CTCF is physically associated with OriP-Qp loop formation in type I and OriP-Cp loop formation in type III latency. Mutations in the CTCF binding site located at Qp disrupt loop formation between Qp and OriP, and lead to the activation of Cp transcription. Mutation of the CTCF binding site at Cp, as well as siRNA depletion of CTCF eliminates both OriP-associated loops, indicating that CTCF plays an integral role in loop formation. These data indicate that epigenetically stable EBV latency types adopt distinct chromatin architectures that depend on CTCF and mediate alternative promoter targeting by the OriP enhancer.</description><identifier>ISSN: 1553-7374</identifier><identifier>ISSN: 1553-7366</identifier><identifier>EISSN: 1553-7374</identifier><identifier>DOI: 10.1371/journal.ppat.1002180</identifier><identifier>PMID: 21829357</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Biology ; CCCTC-Binding Factor ; Cell Line ; Chromatin ; Chromatin - genetics ; Chromatin - metabolism ; Chromatin - virology ; Chromatin Assembly and Disassembly ; Deoxyribonucleic acid ; DNA ; Enhancer Elements, Genetic - genetics ; Epstein-Barr virus ; Experiments ; Gene expression ; Genetic aspects ; Genomes ; Health aspects ; Herpesvirus 4, Human - physiology ; Humans ; Infections ; Lymphoma ; Medicine ; Physiological aspects ; Promoter Regions, Genetic - genetics ; Proteins ; Real time ; Repressor Proteins - genetics ; Repressor Proteins - metabolism ; Transcription, Genetic ; Virus Latency - physiology</subject><ispartof>PLoS pathogens, 2011-07, Vol.7 (7), p.e1002180-e1002180</ispartof><rights>COPYRIGHT 2011 Public Library of Science</rights><rights>2011 Tempera et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Tempera I, Klichinsky M, Lieberman PM (2011) EBV Latency Types Adopt Alternative Chromatin Conformations. PLoS Pathog 7(7): e1002180. doi:10.1371/journal.ppat.1002180</rights><rights>Tempera et al. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c660t-d179639d28b7ab0a568e3188144d599c94ed6ee6611b38e0a59c08d3632a7f2d3</citedby><cites>FETCH-LOGICAL-c660t-d179639d28b7ab0a568e3188144d599c94ed6ee6611b38e0a59c08d3632a7f2d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3145795/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3145795/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21829357$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tempera, Italo</creatorcontrib><creatorcontrib>Klichinsky, Michael</creatorcontrib><creatorcontrib>Lieberman, Paul M</creatorcontrib><title>EBV latency types adopt alternative chromatin conformations</title><title>PLoS pathogens</title><addtitle>PLoS Pathog</addtitle><description>Epstein-Barr Virus (EBV) can establish latent infections with distinct gene expression patterns referred to as latency types. These different latency types are epigenetically stable and correspond to different promoter utilization. Here we explore the three-dimensional conformations of the EBV genome in different latency types. We employed Chromosome Conformation Capture (3C) assay to investigate chromatin loop formation between the OriP enhancer and the promoters that determine type I (Qp) or type III (Cp) gene expression. We show that OriP is in close physical proximity to Qp in type I latency, and to Cp in type III latency. The cellular chromatin insulator and boundary factor CTCF was implicated in EBV chromatin loop formation. Combining 3C and ChIP assays we found that CTCF is physically associated with OriP-Qp loop formation in type I and OriP-Cp loop formation in type III latency. Mutations in the CTCF binding site located at Qp disrupt loop formation between Qp and OriP, and lead to the activation of Cp transcription. Mutation of the CTCF binding site at Cp, as well as siRNA depletion of CTCF eliminates both OriP-associated loops, indicating that CTCF plays an integral role in loop formation. These data indicate that epigenetically stable EBV latency types adopt distinct chromatin architectures that depend on CTCF and mediate alternative promoter targeting by the OriP enhancer.</description><subject>Biology</subject><subject>CCCTC-Binding Factor</subject><subject>Cell Line</subject><subject>Chromatin</subject><subject>Chromatin - genetics</subject><subject>Chromatin - metabolism</subject><subject>Chromatin - virology</subject><subject>Chromatin Assembly and Disassembly</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Enhancer Elements, Genetic - genetics</subject><subject>Epstein-Barr virus</subject><subject>Experiments</subject><subject>Gene expression</subject><subject>Genetic aspects</subject><subject>Genomes</subject><subject>Health aspects</subject><subject>Herpesvirus 4, Human - physiology</subject><subject>Humans</subject><subject>Infections</subject><subject>Lymphoma</subject><subject>Medicine</subject><subject>Physiological aspects</subject><subject>Promoter Regions, Genetic - genetics</subject><subject>Proteins</subject><subject>Real time</subject><subject>Repressor Proteins - genetics</subject><subject>Repressor Proteins - metabolism</subject><subject>Transcription, Genetic</subject><subject>Virus Latency - physiology</subject><issn>1553-7374</issn><issn>1553-7366</issn><issn>1553-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVkktv1DAQxy0Eou3CN0AQiUPFYRc7TvxQJaRSFVipAonX1XLsyTarJA62U7HfHi-bVg3qBfng0fg3__E8EHpB8IpQTt5u3eh73a6GQccVwTgnAj9Cx6Qs6ZJTXjy-Zx-hkxC2GBeEEvYUHSU2l7Tkx-js8v3PrNURerPL4m6AkGnrhpjpNkLSj80NZObauy6ZfWZcXzu_t10fnqEntW4DPJ_uBfrx4fL7xafl1ZeP64vzq6VhDMelJVwyKm0uKq4rrEsmgBIhSFHYUkojC7AMgDFCKiogAdJgYSmjueZ1bukCvTroDq0Laqo7KJILiQUtJU7E-kBYp7dq8E2n_U453ai_Duc3SvvYmBZUUddUFzmnJvUFKAhWE5tLTmoqha1k0no3ZRurDqyBPnrdzkTnL31zrTbuRlFSlFyWSeB0EvDu1wghqq4JBtpW9-DGoISgGAvM8kS-_od8uLiJ2uj0_yYNIKU1e011njPKSikSuUCrB6h0LHRNGhvUTfLPAt7MAhIT4Xfc6DEEtf729T_Yz3O2OLDGuxA81HetI1jtN_e2SLXfXDVtbgp7eb_td0G3q0r_AJQq6BY</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Tempera, Italo</creator><creator>Klichinsky, Michael</creator><creator>Lieberman, Paul M</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20110701</creationdate><title>EBV latency types adopt alternative chromatin conformations</title><author>Tempera, Italo ; Klichinsky, Michael ; Lieberman, Paul M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c660t-d179639d28b7ab0a568e3188144d599c94ed6ee6611b38e0a59c08d3632a7f2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Biology</topic><topic>CCCTC-Binding Factor</topic><topic>Cell Line</topic><topic>Chromatin</topic><topic>Chromatin - genetics</topic><topic>Chromatin - metabolism</topic><topic>Chromatin - virology</topic><topic>Chromatin Assembly and Disassembly</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Enhancer Elements, Genetic - genetics</topic><topic>Epstein-Barr virus</topic><topic>Experiments</topic><topic>Gene expression</topic><topic>Genetic aspects</topic><topic>Genomes</topic><topic>Health aspects</topic><topic>Herpesvirus 4, Human - physiology</topic><topic>Humans</topic><topic>Infections</topic><topic>Lymphoma</topic><topic>Medicine</topic><topic>Physiological aspects</topic><topic>Promoter Regions, Genetic - genetics</topic><topic>Proteins</topic><topic>Real time</topic><topic>Repressor Proteins - genetics</topic><topic>Repressor Proteins - metabolism</topic><topic>Transcription, Genetic</topic><topic>Virus Latency - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tempera, Italo</creatorcontrib><creatorcontrib>Klichinsky, Michael</creatorcontrib><creatorcontrib>Lieberman, Paul M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS pathogens</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tempera, Italo</au><au>Klichinsky, Michael</au><au>Lieberman, Paul M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EBV latency types adopt alternative chromatin conformations</atitle><jtitle>PLoS pathogens</jtitle><addtitle>PLoS Pathog</addtitle><date>2011-07-01</date><risdate>2011</risdate><volume>7</volume><issue>7</issue><spage>e1002180</spage><epage>e1002180</epage><pages>e1002180-e1002180</pages><issn>1553-7374</issn><issn>1553-7366</issn><eissn>1553-7374</eissn><abstract>Epstein-Barr Virus (EBV) can establish latent infections with distinct gene expression patterns referred to as latency types. These different latency types are epigenetically stable and correspond to different promoter utilization. Here we explore the three-dimensional conformations of the EBV genome in different latency types. We employed Chromosome Conformation Capture (3C) assay to investigate chromatin loop formation between the OriP enhancer and the promoters that determine type I (Qp) or type III (Cp) gene expression. We show that OriP is in close physical proximity to Qp in type I latency, and to Cp in type III latency. The cellular chromatin insulator and boundary factor CTCF was implicated in EBV chromatin loop formation. Combining 3C and ChIP assays we found that CTCF is physically associated with OriP-Qp loop formation in type I and OriP-Cp loop formation in type III latency. Mutations in the CTCF binding site located at Qp disrupt loop formation between Qp and OriP, and lead to the activation of Cp transcription. Mutation of the CTCF binding site at Cp, as well as siRNA depletion of CTCF eliminates both OriP-associated loops, indicating that CTCF plays an integral role in loop formation. These data indicate that epigenetically stable EBV latency types adopt distinct chromatin architectures that depend on CTCF and mediate alternative promoter targeting by the OriP enhancer.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>21829357</pmid><doi>10.1371/journal.ppat.1002180</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7374
ispartof PLoS pathogens, 2011-07, Vol.7 (7), p.e1002180-e1002180
issn 1553-7374
1553-7366
1553-7374
language eng
recordid cdi_plos_journals_1289083590
source PubMed (Medline); MEDLINE; Public Library of Science; DOAJ Directory of Open Access Journals; EZB Electronic Journals Library; PubMed Central Open Access
subjects Biology
CCCTC-Binding Factor
Cell Line
Chromatin
Chromatin - genetics
Chromatin - metabolism
Chromatin - virology
Chromatin Assembly and Disassembly
Deoxyribonucleic acid
DNA
Enhancer Elements, Genetic - genetics
Epstein-Barr virus
Experiments
Gene expression
Genetic aspects
Genomes
Health aspects
Herpesvirus 4, Human - physiology
Humans
Infections
Lymphoma
Medicine
Physiological aspects
Promoter Regions, Genetic - genetics
Proteins
Real time
Repressor Proteins - genetics
Repressor Proteins - metabolism
Transcription, Genetic
Virus Latency - physiology
title EBV latency types adopt alternative chromatin conformations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T17%3A55%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EBV%20latency%20types%20adopt%20alternative%20chromatin%20conformations&rft.jtitle=PLoS%20pathogens&rft.au=Tempera,%20Italo&rft.date=2011-07-01&rft.volume=7&rft.issue=7&rft.spage=e1002180&rft.epage=e1002180&rft.pages=e1002180-e1002180&rft.issn=1553-7374&rft.eissn=1553-7374&rft_id=info:doi/10.1371/journal.ppat.1002180&rft_dat=%3Cgale_plos_%3EA263659808%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1289083590&rft_id=info:pmid/21829357&rft_galeid=A263659808&rft_doaj_id=oai_doaj_org_article_4ff3a4273c374e3e86f1d2971f398db9&rfr_iscdi=true