EBV latency types adopt alternative chromatin conformations
Epstein-Barr Virus (EBV) can establish latent infections with distinct gene expression patterns referred to as latency types. These different latency types are epigenetically stable and correspond to different promoter utilization. Here we explore the three-dimensional conformations of the EBV genom...
Gespeichert in:
Veröffentlicht in: | PLoS pathogens 2011-07, Vol.7 (7), p.e1002180-e1002180 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1002180 |
---|---|
container_issue | 7 |
container_start_page | e1002180 |
container_title | PLoS pathogens |
container_volume | 7 |
creator | Tempera, Italo Klichinsky, Michael Lieberman, Paul M |
description | Epstein-Barr Virus (EBV) can establish latent infections with distinct gene expression patterns referred to as latency types. These different latency types are epigenetically stable and correspond to different promoter utilization. Here we explore the three-dimensional conformations of the EBV genome in different latency types. We employed Chromosome Conformation Capture (3C) assay to investigate chromatin loop formation between the OriP enhancer and the promoters that determine type I (Qp) or type III (Cp) gene expression. We show that OriP is in close physical proximity to Qp in type I latency, and to Cp in type III latency. The cellular chromatin insulator and boundary factor CTCF was implicated in EBV chromatin loop formation. Combining 3C and ChIP assays we found that CTCF is physically associated with OriP-Qp loop formation in type I and OriP-Cp loop formation in type III latency. Mutations in the CTCF binding site located at Qp disrupt loop formation between Qp and OriP, and lead to the activation of Cp transcription. Mutation of the CTCF binding site at Cp, as well as siRNA depletion of CTCF eliminates both OriP-associated loops, indicating that CTCF plays an integral role in loop formation. These data indicate that epigenetically stable EBV latency types adopt distinct chromatin architectures that depend on CTCF and mediate alternative promoter targeting by the OriP enhancer. |
doi_str_mv | 10.1371/journal.ppat.1002180 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1289083590</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A263659808</galeid><doaj_id>oai_doaj_org_article_4ff3a4273c374e3e86f1d2971f398db9</doaj_id><sourcerecordid>A263659808</sourcerecordid><originalsourceid>FETCH-LOGICAL-c660t-d179639d28b7ab0a568e3188144d599c94ed6ee6611b38e0a59c08d3632a7f2d3</originalsourceid><addsrcrecordid>eNqVkktv1DAQxy0Eou3CN0AQiUPFYRc7TvxQJaRSFVipAonX1XLsyTarJA62U7HfHi-bVg3qBfng0fg3__E8EHpB8IpQTt5u3eh73a6GQccVwTgnAj9Cx6Qs6ZJTXjy-Zx-hkxC2GBeEEvYUHSU2l7Tkx-js8v3PrNURerPL4m6AkGnrhpjpNkLSj80NZObauy6ZfWZcXzu_t10fnqEntW4DPJ_uBfrx4fL7xafl1ZeP64vzq6VhDMelJVwyKm0uKq4rrEsmgBIhSFHYUkojC7AMgDFCKiogAdJgYSmjueZ1bukCvTroDq0Laqo7KJILiQUtJU7E-kBYp7dq8E2n_U453ai_Duc3SvvYmBZUUddUFzmnJvUFKAhWE5tLTmoqha1k0no3ZRurDqyBPnrdzkTnL31zrTbuRlFSlFyWSeB0EvDu1wghqq4JBtpW9-DGoISgGAvM8kS-_od8uLiJ2uj0_yYNIKU1e011njPKSikSuUCrB6h0LHRNGhvUTfLPAt7MAhIT4Xfc6DEEtf729T_Yz3O2OLDGuxA81HetI1jtN_e2SLXfXDVtbgp7eb_td0G3q0r_AJQq6BY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1289083590</pqid></control><display><type>article</type><title>EBV latency types adopt alternative chromatin conformations</title><source>PubMed (Medline)</source><source>MEDLINE</source><source>Public Library of Science</source><source>DOAJ Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><source>PubMed Central Open Access</source><creator>Tempera, Italo ; Klichinsky, Michael ; Lieberman, Paul M</creator><creatorcontrib>Tempera, Italo ; Klichinsky, Michael ; Lieberman, Paul M</creatorcontrib><description>Epstein-Barr Virus (EBV) can establish latent infections with distinct gene expression patterns referred to as latency types. These different latency types are epigenetically stable and correspond to different promoter utilization. Here we explore the three-dimensional conformations of the EBV genome in different latency types. We employed Chromosome Conformation Capture (3C) assay to investigate chromatin loop formation between the OriP enhancer and the promoters that determine type I (Qp) or type III (Cp) gene expression. We show that OriP is in close physical proximity to Qp in type I latency, and to Cp in type III latency. The cellular chromatin insulator and boundary factor CTCF was implicated in EBV chromatin loop formation. Combining 3C and ChIP assays we found that CTCF is physically associated with OriP-Qp loop formation in type I and OriP-Cp loop formation in type III latency. Mutations in the CTCF binding site located at Qp disrupt loop formation between Qp and OriP, and lead to the activation of Cp transcription. Mutation of the CTCF binding site at Cp, as well as siRNA depletion of CTCF eliminates both OriP-associated loops, indicating that CTCF plays an integral role in loop formation. These data indicate that epigenetically stable EBV latency types adopt distinct chromatin architectures that depend on CTCF and mediate alternative promoter targeting by the OriP enhancer.</description><identifier>ISSN: 1553-7374</identifier><identifier>ISSN: 1553-7366</identifier><identifier>EISSN: 1553-7374</identifier><identifier>DOI: 10.1371/journal.ppat.1002180</identifier><identifier>PMID: 21829357</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Biology ; CCCTC-Binding Factor ; Cell Line ; Chromatin ; Chromatin - genetics ; Chromatin - metabolism ; Chromatin - virology ; Chromatin Assembly and Disassembly ; Deoxyribonucleic acid ; DNA ; Enhancer Elements, Genetic - genetics ; Epstein-Barr virus ; Experiments ; Gene expression ; Genetic aspects ; Genomes ; Health aspects ; Herpesvirus 4, Human - physiology ; Humans ; Infections ; Lymphoma ; Medicine ; Physiological aspects ; Promoter Regions, Genetic - genetics ; Proteins ; Real time ; Repressor Proteins - genetics ; Repressor Proteins - metabolism ; Transcription, Genetic ; Virus Latency - physiology</subject><ispartof>PLoS pathogens, 2011-07, Vol.7 (7), p.e1002180-e1002180</ispartof><rights>COPYRIGHT 2011 Public Library of Science</rights><rights>2011 Tempera et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Tempera I, Klichinsky M, Lieberman PM (2011) EBV Latency Types Adopt Alternative Chromatin Conformations. PLoS Pathog 7(7): e1002180. doi:10.1371/journal.ppat.1002180</rights><rights>Tempera et al. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c660t-d179639d28b7ab0a568e3188144d599c94ed6ee6611b38e0a59c08d3632a7f2d3</citedby><cites>FETCH-LOGICAL-c660t-d179639d28b7ab0a568e3188144d599c94ed6ee6611b38e0a59c08d3632a7f2d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3145795/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3145795/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21829357$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tempera, Italo</creatorcontrib><creatorcontrib>Klichinsky, Michael</creatorcontrib><creatorcontrib>Lieberman, Paul M</creatorcontrib><title>EBV latency types adopt alternative chromatin conformations</title><title>PLoS pathogens</title><addtitle>PLoS Pathog</addtitle><description>Epstein-Barr Virus (EBV) can establish latent infections with distinct gene expression patterns referred to as latency types. These different latency types are epigenetically stable and correspond to different promoter utilization. Here we explore the three-dimensional conformations of the EBV genome in different latency types. We employed Chromosome Conformation Capture (3C) assay to investigate chromatin loop formation between the OriP enhancer and the promoters that determine type I (Qp) or type III (Cp) gene expression. We show that OriP is in close physical proximity to Qp in type I latency, and to Cp in type III latency. The cellular chromatin insulator and boundary factor CTCF was implicated in EBV chromatin loop formation. Combining 3C and ChIP assays we found that CTCF is physically associated with OriP-Qp loop formation in type I and OriP-Cp loop formation in type III latency. Mutations in the CTCF binding site located at Qp disrupt loop formation between Qp and OriP, and lead to the activation of Cp transcription. Mutation of the CTCF binding site at Cp, as well as siRNA depletion of CTCF eliminates both OriP-associated loops, indicating that CTCF plays an integral role in loop formation. These data indicate that epigenetically stable EBV latency types adopt distinct chromatin architectures that depend on CTCF and mediate alternative promoter targeting by the OriP enhancer.</description><subject>Biology</subject><subject>CCCTC-Binding Factor</subject><subject>Cell Line</subject><subject>Chromatin</subject><subject>Chromatin - genetics</subject><subject>Chromatin - metabolism</subject><subject>Chromatin - virology</subject><subject>Chromatin Assembly and Disassembly</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Enhancer Elements, Genetic - genetics</subject><subject>Epstein-Barr virus</subject><subject>Experiments</subject><subject>Gene expression</subject><subject>Genetic aspects</subject><subject>Genomes</subject><subject>Health aspects</subject><subject>Herpesvirus 4, Human - physiology</subject><subject>Humans</subject><subject>Infections</subject><subject>Lymphoma</subject><subject>Medicine</subject><subject>Physiological aspects</subject><subject>Promoter Regions, Genetic - genetics</subject><subject>Proteins</subject><subject>Real time</subject><subject>Repressor Proteins - genetics</subject><subject>Repressor Proteins - metabolism</subject><subject>Transcription, Genetic</subject><subject>Virus Latency - physiology</subject><issn>1553-7374</issn><issn>1553-7366</issn><issn>1553-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVkktv1DAQxy0Eou3CN0AQiUPFYRc7TvxQJaRSFVipAonX1XLsyTarJA62U7HfHi-bVg3qBfng0fg3__E8EHpB8IpQTt5u3eh73a6GQccVwTgnAj9Cx6Qs6ZJTXjy-Zx-hkxC2GBeEEvYUHSU2l7Tkx-js8v3PrNURerPL4m6AkGnrhpjpNkLSj80NZObauy6ZfWZcXzu_t10fnqEntW4DPJ_uBfrx4fL7xafl1ZeP64vzq6VhDMelJVwyKm0uKq4rrEsmgBIhSFHYUkojC7AMgDFCKiogAdJgYSmjueZ1bukCvTroDq0Laqo7KJILiQUtJU7E-kBYp7dq8E2n_U453ai_Duc3SvvYmBZUUddUFzmnJvUFKAhWE5tLTmoqha1k0no3ZRurDqyBPnrdzkTnL31zrTbuRlFSlFyWSeB0EvDu1wghqq4JBtpW9-DGoISgGAvM8kS-_od8uLiJ2uj0_yYNIKU1e011njPKSikSuUCrB6h0LHRNGhvUTfLPAt7MAhIT4Xfc6DEEtf729T_Yz3O2OLDGuxA81HetI1jtN_e2SLXfXDVtbgp7eb_td0G3q0r_AJQq6BY</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Tempera, Italo</creator><creator>Klichinsky, Michael</creator><creator>Lieberman, Paul M</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20110701</creationdate><title>EBV latency types adopt alternative chromatin conformations</title><author>Tempera, Italo ; Klichinsky, Michael ; Lieberman, Paul M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c660t-d179639d28b7ab0a568e3188144d599c94ed6ee6611b38e0a59c08d3632a7f2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Biology</topic><topic>CCCTC-Binding Factor</topic><topic>Cell Line</topic><topic>Chromatin</topic><topic>Chromatin - genetics</topic><topic>Chromatin - metabolism</topic><topic>Chromatin - virology</topic><topic>Chromatin Assembly and Disassembly</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Enhancer Elements, Genetic - genetics</topic><topic>Epstein-Barr virus</topic><topic>Experiments</topic><topic>Gene expression</topic><topic>Genetic aspects</topic><topic>Genomes</topic><topic>Health aspects</topic><topic>Herpesvirus 4, Human - physiology</topic><topic>Humans</topic><topic>Infections</topic><topic>Lymphoma</topic><topic>Medicine</topic><topic>Physiological aspects</topic><topic>Promoter Regions, Genetic - genetics</topic><topic>Proteins</topic><topic>Real time</topic><topic>Repressor Proteins - genetics</topic><topic>Repressor Proteins - metabolism</topic><topic>Transcription, Genetic</topic><topic>Virus Latency - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tempera, Italo</creatorcontrib><creatorcontrib>Klichinsky, Michael</creatorcontrib><creatorcontrib>Lieberman, Paul M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS pathogens</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tempera, Italo</au><au>Klichinsky, Michael</au><au>Lieberman, Paul M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EBV latency types adopt alternative chromatin conformations</atitle><jtitle>PLoS pathogens</jtitle><addtitle>PLoS Pathog</addtitle><date>2011-07-01</date><risdate>2011</risdate><volume>7</volume><issue>7</issue><spage>e1002180</spage><epage>e1002180</epage><pages>e1002180-e1002180</pages><issn>1553-7374</issn><issn>1553-7366</issn><eissn>1553-7374</eissn><abstract>Epstein-Barr Virus (EBV) can establish latent infections with distinct gene expression patterns referred to as latency types. These different latency types are epigenetically stable and correspond to different promoter utilization. Here we explore the three-dimensional conformations of the EBV genome in different latency types. We employed Chromosome Conformation Capture (3C) assay to investigate chromatin loop formation between the OriP enhancer and the promoters that determine type I (Qp) or type III (Cp) gene expression. We show that OriP is in close physical proximity to Qp in type I latency, and to Cp in type III latency. The cellular chromatin insulator and boundary factor CTCF was implicated in EBV chromatin loop formation. Combining 3C and ChIP assays we found that CTCF is physically associated with OriP-Qp loop formation in type I and OriP-Cp loop formation in type III latency. Mutations in the CTCF binding site located at Qp disrupt loop formation between Qp and OriP, and lead to the activation of Cp transcription. Mutation of the CTCF binding site at Cp, as well as siRNA depletion of CTCF eliminates both OriP-associated loops, indicating that CTCF plays an integral role in loop formation. These data indicate that epigenetically stable EBV latency types adopt distinct chromatin architectures that depend on CTCF and mediate alternative promoter targeting by the OriP enhancer.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>21829357</pmid><doi>10.1371/journal.ppat.1002180</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7374 |
ispartof | PLoS pathogens, 2011-07, Vol.7 (7), p.e1002180-e1002180 |
issn | 1553-7374 1553-7366 1553-7374 |
language | eng |
recordid | cdi_plos_journals_1289083590 |
source | PubMed (Medline); MEDLINE; Public Library of Science; DOAJ Directory of Open Access Journals; EZB Electronic Journals Library; PubMed Central Open Access |
subjects | Biology CCCTC-Binding Factor Cell Line Chromatin Chromatin - genetics Chromatin - metabolism Chromatin - virology Chromatin Assembly and Disassembly Deoxyribonucleic acid DNA Enhancer Elements, Genetic - genetics Epstein-Barr virus Experiments Gene expression Genetic aspects Genomes Health aspects Herpesvirus 4, Human - physiology Humans Infections Lymphoma Medicine Physiological aspects Promoter Regions, Genetic - genetics Proteins Real time Repressor Proteins - genetics Repressor Proteins - metabolism Transcription, Genetic Virus Latency - physiology |
title | EBV latency types adopt alternative chromatin conformations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T17%3A55%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EBV%20latency%20types%20adopt%20alternative%20chromatin%20conformations&rft.jtitle=PLoS%20pathogens&rft.au=Tempera,%20Italo&rft.date=2011-07-01&rft.volume=7&rft.issue=7&rft.spage=e1002180&rft.epage=e1002180&rft.pages=e1002180-e1002180&rft.issn=1553-7374&rft.eissn=1553-7374&rft_id=info:doi/10.1371/journal.ppat.1002180&rft_dat=%3Cgale_plos_%3EA263659808%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1289083590&rft_id=info:pmid/21829357&rft_galeid=A263659808&rft_doaj_id=oai_doaj_org_article_4ff3a4273c374e3e86f1d2971f398db9&rfr_iscdi=true |