Helicobacter pylori lipopolysaccharide is synthesized via a novel pathway with an evolutionary connection to protein N-glycosylation

Lipopolysaccharide (LPS) is a major component on the surface of Gram negative bacteria and is composed of lipid A-core and the O antigen polysaccharide. O polysaccharides of the gastric pathogen Helicobacter pylori contain Lewis antigens, mimicking glycan structures produced by human cells. The inte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS pathogens 2010-03, Vol.6 (3), p.e1000819-e1000819
Hauptverfasser: Hug, Isabelle, Couturier, Marc R, Rooker, Michelle M, Taylor, Diane E, Stein, Markus, Feldman, Mario F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1000819
container_issue 3
container_start_page e1000819
container_title PLoS pathogens
container_volume 6
creator Hug, Isabelle
Couturier, Marc R
Rooker, Michelle M
Taylor, Diane E
Stein, Markus
Feldman, Mario F
description Lipopolysaccharide (LPS) is a major component on the surface of Gram negative bacteria and is composed of lipid A-core and the O antigen polysaccharide. O polysaccharides of the gastric pathogen Helicobacter pylori contain Lewis antigens, mimicking glycan structures produced by human cells. The interaction of Lewis antigens with human dendritic cells induces a modulation of the immune response, contributing to the H. pylori virulence. The amount and position of Lewis antigens in the LPS varies among H. pylori isolates, indicating an adaptation to the host. In contrast to most bacteria, the genes for H. pylori O antigen biosynthesis are spread throughout the chromosome, which likely contributed to the fact that the LPS assembly pathway remained uncharacterized. In this study, two enzymes typically involved in LPS biosynthesis were found encoded in the H. pylori genome; the initiating glycosyltransferase WecA, and the O antigen ligase WaaL. Fluorescence microscopy and analysis of LPS from H. pylori mutants revealed that WecA and WaaL are involved in LPS production. Activity of WecA was additionally demonstrated with complementation experiments in Escherichia coli. WaaL ligase activity was shown in vitro. Analysis of the H. pylori genome failed to detect a flippase typically involved in O antigen synthesis. Instead, we identified a homolog of a flippase involved in protein N-glycosylation in other bacteria, although this pathway is not present in H. pylori. This flippase named Wzk was essential for O antigen display in H. pylori and was able to transport various glycans in E. coli. Whereas the O antigen mutants showed normal swimming motility and injection of the toxin CagA into host cells, the uptake of DNA seemed to be affected. We conclude that H. pylori uses a novel LPS biosynthetic pathway, evolutionarily connected to bacterial protein N-glycosylation.
doi_str_mv 10.1371/journal.ppat.1000819
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1289075558</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A223226529</galeid><doaj_id>oai_doaj_org_article_38f831622c144b9382479bdd36d54cdf</doaj_id><sourcerecordid>A223226529</sourcerecordid><originalsourceid>FETCH-LOGICAL-c632t-47646eb5d84445f7ea7a497766de03991b9f051b07e76ae73ef1309aaa302c3d3</originalsourceid><addsrcrecordid>eNqVkk1vEzEQhlcIREvhHyCwxAFxSPDXrncvlaoKaKSqSHycLa93NnHk2IvtpCxnfjheklaNxAX5YHvmmdf2-C2KlwTPCRPk_dpvg1N2PgwqzQnGuCbNo-KUlCWbCSb44wfrk-JZjGuMOWGkelqcUMwYoyU5LX5fgTXat0onCGgYrQ8GWTP4wdsxKq1XKpgOkIkoji6tIJpf0KGdUUgh53dgUT5_datGdGvSCimHYOftNhnvVBiR9s6BnnYoeTQEn8A4dDNb2lH7OFo1pZ4XT3plI7w4zGfF948fvl1eza4_f1pcXlzPdMVomnFR8Qrasqs552UvQAnFGyGqqgPMmoa0TY9L0mIBolIgGPSE4UYpxTDVrGNnxeu97mB9lIcGRklo3WBRlmWdicWe6LxayyGYTX6E9MrIvwEfllKFZLQFyeq-zt2kVBPO24bVlIum7TpWdSXXXZ-1zg-nbdsNdBpcCsoeiR5nnFnJpd9JWvOsO13m7UEg-B9biEluTNRgrXLgt1EKxjjmDW4y-WZPLlW-mXG9z4J6ouUFpYzSqqQTNf8HlUcHm-wBB73J8aOCd0cFmUnwMy3VNka5-PrlP9ibY5bvWR18jAH6-6YQLCdz3_2NnMwtD-bOZa8eNvS-6M7N7A9o8PiF</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733404909</pqid></control><display><type>article</type><title>Helicobacter pylori lipopolysaccharide is synthesized via a novel pathway with an evolutionary connection to protein N-glycosylation</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Hug, Isabelle ; Couturier, Marc R ; Rooker, Michelle M ; Taylor, Diane E ; Stein, Markus ; Feldman, Mario F</creator><contributor>Weiser, Jeffrey N.</contributor><creatorcontrib>Hug, Isabelle ; Couturier, Marc R ; Rooker, Michelle M ; Taylor, Diane E ; Stein, Markus ; Feldman, Mario F ; Weiser, Jeffrey N.</creatorcontrib><description>Lipopolysaccharide (LPS) is a major component on the surface of Gram negative bacteria and is composed of lipid A-core and the O antigen polysaccharide. O polysaccharides of the gastric pathogen Helicobacter pylori contain Lewis antigens, mimicking glycan structures produced by human cells. The interaction of Lewis antigens with human dendritic cells induces a modulation of the immune response, contributing to the H. pylori virulence. The amount and position of Lewis antigens in the LPS varies among H. pylori isolates, indicating an adaptation to the host. In contrast to most bacteria, the genes for H. pylori O antigen biosynthesis are spread throughout the chromosome, which likely contributed to the fact that the LPS assembly pathway remained uncharacterized. In this study, two enzymes typically involved in LPS biosynthesis were found encoded in the H. pylori genome; the initiating glycosyltransferase WecA, and the O antigen ligase WaaL. Fluorescence microscopy and analysis of LPS from H. pylori mutants revealed that WecA and WaaL are involved in LPS production. Activity of WecA was additionally demonstrated with complementation experiments in Escherichia coli. WaaL ligase activity was shown in vitro. Analysis of the H. pylori genome failed to detect a flippase typically involved in O antigen synthesis. Instead, we identified a homolog of a flippase involved in protein N-glycosylation in other bacteria, although this pathway is not present in H. pylori. This flippase named Wzk was essential for O antigen display in H. pylori and was able to transport various glycans in E. coli. Whereas the O antigen mutants showed normal swimming motility and injection of the toxin CagA into host cells, the uptake of DNA seemed to be affected. We conclude that H. pylori uses a novel LPS biosynthetic pathway, evolutionarily connected to bacterial protein N-glycosylation.</description><identifier>ISSN: 1553-7374</identifier><identifier>ISSN: 1553-7366</identifier><identifier>EISSN: 1553-7374</identifier><identifier>DOI: 10.1371/journal.ppat.1000819</identifier><identifier>PMID: 20333251</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Bacteriology ; Biochemistry/Macromolecular Assemblies and Machines ; Biosynthesis ; Cell Line ; Epithelial Cells - metabolism ; Epithelial Cells - microbiology ; Escherichia coli - enzymology ; Escherichia coli - genetics ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; Evolution, Molecular ; Gastric Mucosa - cytology ; Gastroenterology and Hepatology/Gastrointestinal Infections ; Genetic aspects ; Glycosylation ; Glycosyltransferases - genetics ; Glycosyltransferases - metabolism ; Helicobacter pylori ; Helicobacter pylori - enzymology ; Helicobacter pylori - genetics ; Humans ; Infections ; Infectious Diseases/Bacterial Infections ; Infectious Diseases/Gastrointestinal Infections ; Lewis Blood-Group System - metabolism ; Ligases - genetics ; Ligases - metabolism ; Lipopolysaccharides ; Lipopolysaccharides - biosynthesis ; Microbiology ; Microbiology/Cellular Microbiology and Pathogenesis ; Mutation ; O Antigens - genetics ; O Antigens - metabolism ; Peptidyl Transferases - metabolism ; Phenotype ; Phosphotransferases (Alcohol Group Acceptor) - genetics ; Phosphotransferases (Alcohol Group Acceptor) - metabolism ; Physiological aspects ; Proteins ; Transferases (Other Substituted Phosphate Groups) - genetics ; Transferases (Other Substituted Phosphate Groups) - metabolism ; Ulcers</subject><ispartof>PLoS pathogens, 2010-03, Vol.6 (3), p.e1000819-e1000819</ispartof><rights>COPYRIGHT 2010 Public Library of Science</rights><rights>Hug et al. 2010</rights><rights>2010 Hug et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Hug I, Couturier MR, Rooker MM, Taylor DE, Stein M, et al. (2010) Helicobacter pylori Lipopolysaccharide Is Synthesized via a Novel Pathway with an Evolutionary Connection to Protein N-Glycosylation. PLoS Pathog 6(3): e1000819. doi:10.1371/journal.ppat.1000819</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c632t-47646eb5d84445f7ea7a497766de03991b9f051b07e76ae73ef1309aaa302c3d3</citedby><cites>FETCH-LOGICAL-c632t-47646eb5d84445f7ea7a497766de03991b9f051b07e76ae73ef1309aaa302c3d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2841628/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2841628/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2101,2927,23865,27923,27924,53790,53792,79471,79472</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20333251$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Weiser, Jeffrey N.</contributor><creatorcontrib>Hug, Isabelle</creatorcontrib><creatorcontrib>Couturier, Marc R</creatorcontrib><creatorcontrib>Rooker, Michelle M</creatorcontrib><creatorcontrib>Taylor, Diane E</creatorcontrib><creatorcontrib>Stein, Markus</creatorcontrib><creatorcontrib>Feldman, Mario F</creatorcontrib><title>Helicobacter pylori lipopolysaccharide is synthesized via a novel pathway with an evolutionary connection to protein N-glycosylation</title><title>PLoS pathogens</title><addtitle>PLoS Pathog</addtitle><description>Lipopolysaccharide (LPS) is a major component on the surface of Gram negative bacteria and is composed of lipid A-core and the O antigen polysaccharide. O polysaccharides of the gastric pathogen Helicobacter pylori contain Lewis antigens, mimicking glycan structures produced by human cells. The interaction of Lewis antigens with human dendritic cells induces a modulation of the immune response, contributing to the H. pylori virulence. The amount and position of Lewis antigens in the LPS varies among H. pylori isolates, indicating an adaptation to the host. In contrast to most bacteria, the genes for H. pylori O antigen biosynthesis are spread throughout the chromosome, which likely contributed to the fact that the LPS assembly pathway remained uncharacterized. In this study, two enzymes typically involved in LPS biosynthesis were found encoded in the H. pylori genome; the initiating glycosyltransferase WecA, and the O antigen ligase WaaL. Fluorescence microscopy and analysis of LPS from H. pylori mutants revealed that WecA and WaaL are involved in LPS production. Activity of WecA was additionally demonstrated with complementation experiments in Escherichia coli. WaaL ligase activity was shown in vitro. Analysis of the H. pylori genome failed to detect a flippase typically involved in O antigen synthesis. Instead, we identified a homolog of a flippase involved in protein N-glycosylation in other bacteria, although this pathway is not present in H. pylori. This flippase named Wzk was essential for O antigen display in H. pylori and was able to transport various glycans in E. coli. Whereas the O antigen mutants showed normal swimming motility and injection of the toxin CagA into host cells, the uptake of DNA seemed to be affected. We conclude that H. pylori uses a novel LPS biosynthetic pathway, evolutionarily connected to bacterial protein N-glycosylation.</description><subject>Bacteriology</subject><subject>Biochemistry/Macromolecular Assemblies and Machines</subject><subject>Biosynthesis</subject><subject>Cell Line</subject><subject>Epithelial Cells - metabolism</subject><subject>Epithelial Cells - microbiology</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Evolution, Molecular</subject><subject>Gastric Mucosa - cytology</subject><subject>Gastroenterology and Hepatology/Gastrointestinal Infections</subject><subject>Genetic aspects</subject><subject>Glycosylation</subject><subject>Glycosyltransferases - genetics</subject><subject>Glycosyltransferases - metabolism</subject><subject>Helicobacter pylori</subject><subject>Helicobacter pylori - enzymology</subject><subject>Helicobacter pylori - genetics</subject><subject>Humans</subject><subject>Infections</subject><subject>Infectious Diseases/Bacterial Infections</subject><subject>Infectious Diseases/Gastrointestinal Infections</subject><subject>Lewis Blood-Group System - metabolism</subject><subject>Ligases - genetics</subject><subject>Ligases - metabolism</subject><subject>Lipopolysaccharides</subject><subject>Lipopolysaccharides - biosynthesis</subject><subject>Microbiology</subject><subject>Microbiology/Cellular Microbiology and Pathogenesis</subject><subject>Mutation</subject><subject>O Antigens - genetics</subject><subject>O Antigens - metabolism</subject><subject>Peptidyl Transferases - metabolism</subject><subject>Phenotype</subject><subject>Phosphotransferases (Alcohol Group Acceptor) - genetics</subject><subject>Phosphotransferases (Alcohol Group Acceptor) - metabolism</subject><subject>Physiological aspects</subject><subject>Proteins</subject><subject>Transferases (Other Substituted Phosphate Groups) - genetics</subject><subject>Transferases (Other Substituted Phosphate Groups) - metabolism</subject><subject>Ulcers</subject><issn>1553-7374</issn><issn>1553-7366</issn><issn>1553-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVkk1vEzEQhlcIREvhHyCwxAFxSPDXrncvlaoKaKSqSHycLa93NnHk2IvtpCxnfjheklaNxAX5YHvmmdf2-C2KlwTPCRPk_dpvg1N2PgwqzQnGuCbNo-KUlCWbCSb44wfrk-JZjGuMOWGkelqcUMwYoyU5LX5fgTXat0onCGgYrQ8GWTP4wdsxKq1XKpgOkIkoji6tIJpf0KGdUUgh53dgUT5_datGdGvSCimHYOftNhnvVBiR9s6BnnYoeTQEn8A4dDNb2lH7OFo1pZ4XT3plI7w4zGfF948fvl1eza4_f1pcXlzPdMVomnFR8Qrasqs552UvQAnFGyGqqgPMmoa0TY9L0mIBolIgGPSE4UYpxTDVrGNnxeu97mB9lIcGRklo3WBRlmWdicWe6LxayyGYTX6E9MrIvwEfllKFZLQFyeq-zt2kVBPO24bVlIum7TpWdSXXXZ-1zg-nbdsNdBpcCsoeiR5nnFnJpd9JWvOsO13m7UEg-B9biEluTNRgrXLgt1EKxjjmDW4y-WZPLlW-mXG9z4J6ouUFpYzSqqQTNf8HlUcHm-wBB73J8aOCd0cFmUnwMy3VNka5-PrlP9ibY5bvWR18jAH6-6YQLCdz3_2NnMwtD-bOZa8eNvS-6M7N7A9o8PiF</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>Hug, Isabelle</creator><creator>Couturier, Marc R</creator><creator>Rooker, Michelle M</creator><creator>Taylor, Diane E</creator><creator>Stein, Markus</creator><creator>Feldman, Mario F</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20100301</creationdate><title>Helicobacter pylori lipopolysaccharide is synthesized via a novel pathway with an evolutionary connection to protein N-glycosylation</title><author>Hug, Isabelle ; Couturier, Marc R ; Rooker, Michelle M ; Taylor, Diane E ; Stein, Markus ; Feldman, Mario F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c632t-47646eb5d84445f7ea7a497766de03991b9f051b07e76ae73ef1309aaa302c3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Bacteriology</topic><topic>Biochemistry/Macromolecular Assemblies and Machines</topic><topic>Biosynthesis</topic><topic>Cell Line</topic><topic>Epithelial Cells - metabolism</topic><topic>Epithelial Cells - microbiology</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Evolution, Molecular</topic><topic>Gastric Mucosa - cytology</topic><topic>Gastroenterology and Hepatology/Gastrointestinal Infections</topic><topic>Genetic aspects</topic><topic>Glycosylation</topic><topic>Glycosyltransferases - genetics</topic><topic>Glycosyltransferases - metabolism</topic><topic>Helicobacter pylori</topic><topic>Helicobacter pylori - enzymology</topic><topic>Helicobacter pylori - genetics</topic><topic>Humans</topic><topic>Infections</topic><topic>Infectious Diseases/Bacterial Infections</topic><topic>Infectious Diseases/Gastrointestinal Infections</topic><topic>Lewis Blood-Group System - metabolism</topic><topic>Ligases - genetics</topic><topic>Ligases - metabolism</topic><topic>Lipopolysaccharides</topic><topic>Lipopolysaccharides - biosynthesis</topic><topic>Microbiology</topic><topic>Microbiology/Cellular Microbiology and Pathogenesis</topic><topic>Mutation</topic><topic>O Antigens - genetics</topic><topic>O Antigens - metabolism</topic><topic>Peptidyl Transferases - metabolism</topic><topic>Phenotype</topic><topic>Phosphotransferases (Alcohol Group Acceptor) - genetics</topic><topic>Phosphotransferases (Alcohol Group Acceptor) - metabolism</topic><topic>Physiological aspects</topic><topic>Proteins</topic><topic>Transferases (Other Substituted Phosphate Groups) - genetics</topic><topic>Transferases (Other Substituted Phosphate Groups) - metabolism</topic><topic>Ulcers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hug, Isabelle</creatorcontrib><creatorcontrib>Couturier, Marc R</creatorcontrib><creatorcontrib>Rooker, Michelle M</creatorcontrib><creatorcontrib>Taylor, Diane E</creatorcontrib><creatorcontrib>Stein, Markus</creatorcontrib><creatorcontrib>Feldman, Mario F</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS pathogens</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hug, Isabelle</au><au>Couturier, Marc R</au><au>Rooker, Michelle M</au><au>Taylor, Diane E</au><au>Stein, Markus</au><au>Feldman, Mario F</au><au>Weiser, Jeffrey N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Helicobacter pylori lipopolysaccharide is synthesized via a novel pathway with an evolutionary connection to protein N-glycosylation</atitle><jtitle>PLoS pathogens</jtitle><addtitle>PLoS Pathog</addtitle><date>2010-03-01</date><risdate>2010</risdate><volume>6</volume><issue>3</issue><spage>e1000819</spage><epage>e1000819</epage><pages>e1000819-e1000819</pages><issn>1553-7374</issn><issn>1553-7366</issn><eissn>1553-7374</eissn><abstract>Lipopolysaccharide (LPS) is a major component on the surface of Gram negative bacteria and is composed of lipid A-core and the O antigen polysaccharide. O polysaccharides of the gastric pathogen Helicobacter pylori contain Lewis antigens, mimicking glycan structures produced by human cells. The interaction of Lewis antigens with human dendritic cells induces a modulation of the immune response, contributing to the H. pylori virulence. The amount and position of Lewis antigens in the LPS varies among H. pylori isolates, indicating an adaptation to the host. In contrast to most bacteria, the genes for H. pylori O antigen biosynthesis are spread throughout the chromosome, which likely contributed to the fact that the LPS assembly pathway remained uncharacterized. In this study, two enzymes typically involved in LPS biosynthesis were found encoded in the H. pylori genome; the initiating glycosyltransferase WecA, and the O antigen ligase WaaL. Fluorescence microscopy and analysis of LPS from H. pylori mutants revealed that WecA and WaaL are involved in LPS production. Activity of WecA was additionally demonstrated with complementation experiments in Escherichia coli. WaaL ligase activity was shown in vitro. Analysis of the H. pylori genome failed to detect a flippase typically involved in O antigen synthesis. Instead, we identified a homolog of a flippase involved in protein N-glycosylation in other bacteria, although this pathway is not present in H. pylori. This flippase named Wzk was essential for O antigen display in H. pylori and was able to transport various glycans in E. coli. Whereas the O antigen mutants showed normal swimming motility and injection of the toxin CagA into host cells, the uptake of DNA seemed to be affected. We conclude that H. pylori uses a novel LPS biosynthetic pathway, evolutionarily connected to bacterial protein N-glycosylation.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>20333251</pmid><doi>10.1371/journal.ppat.1000819</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7374
ispartof PLoS pathogens, 2010-03, Vol.6 (3), p.e1000819-e1000819
issn 1553-7374
1553-7366
1553-7374
language eng
recordid cdi_plos_journals_1289075558
source MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central Open Access; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Bacteriology
Biochemistry/Macromolecular Assemblies and Machines
Biosynthesis
Cell Line
Epithelial Cells - metabolism
Epithelial Cells - microbiology
Escherichia coli - enzymology
Escherichia coli - genetics
Escherichia coli Proteins - genetics
Escherichia coli Proteins - metabolism
Evolution, Molecular
Gastric Mucosa - cytology
Gastroenterology and Hepatology/Gastrointestinal Infections
Genetic aspects
Glycosylation
Glycosyltransferases - genetics
Glycosyltransferases - metabolism
Helicobacter pylori
Helicobacter pylori - enzymology
Helicobacter pylori - genetics
Humans
Infections
Infectious Diseases/Bacterial Infections
Infectious Diseases/Gastrointestinal Infections
Lewis Blood-Group System - metabolism
Ligases - genetics
Ligases - metabolism
Lipopolysaccharides
Lipopolysaccharides - biosynthesis
Microbiology
Microbiology/Cellular Microbiology and Pathogenesis
Mutation
O Antigens - genetics
O Antigens - metabolism
Peptidyl Transferases - metabolism
Phenotype
Phosphotransferases (Alcohol Group Acceptor) - genetics
Phosphotransferases (Alcohol Group Acceptor) - metabolism
Physiological aspects
Proteins
Transferases (Other Substituted Phosphate Groups) - genetics
Transferases (Other Substituted Phosphate Groups) - metabolism
Ulcers
title Helicobacter pylori lipopolysaccharide is synthesized via a novel pathway with an evolutionary connection to protein N-glycosylation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T13%3A30%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Helicobacter%20pylori%20lipopolysaccharide%20is%20synthesized%20via%20a%20novel%20pathway%20with%20an%20evolutionary%20connection%20to%20protein%20N-glycosylation&rft.jtitle=PLoS%20pathogens&rft.au=Hug,%20Isabelle&rft.date=2010-03-01&rft.volume=6&rft.issue=3&rft.spage=e1000819&rft.epage=e1000819&rft.pages=e1000819-e1000819&rft.issn=1553-7374&rft.eissn=1553-7374&rft_id=info:doi/10.1371/journal.ppat.1000819&rft_dat=%3Cgale_plos_%3EA223226529%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733404909&rft_id=info:pmid/20333251&rft_galeid=A223226529&rft_doaj_id=oai_doaj_org_article_38f831622c144b9382479bdd36d54cdf&rfr_iscdi=true