Characterizing sympathetic neurovascular transduction in humans

Despite its critical role for cardiovascular homeostasis in humans, only a few studies have directly probed the transduction of sympathetic nerve activity to regional vascular responses--sympathetic neurovascular transduction. Those that have variably relied on either vascular resistance or vascular...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2013-01, Vol.8 (1), p.e53769-e53769
Hauptverfasser: Tan, Can Ozan, Tamisier, Renaud, Hamner, J W, Taylor, J Andrew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e53769
container_issue 1
container_start_page e53769
container_title PloS one
container_volume 8
creator Tan, Can Ozan
Tamisier, Renaud
Hamner, J W
Taylor, J Andrew
description Despite its critical role for cardiovascular homeostasis in humans, only a few studies have directly probed the transduction of sympathetic nerve activity to regional vascular responses--sympathetic neurovascular transduction. Those that have variably relied on either vascular resistance or vascular conductance to quantify the responses. However, it remains unclear which approach would better reflect the physiology. We assessed the utility of both of these as well as an alternative approach in 21 healthy men. We recorded arterial pressure (Finapres), peroneal sympathetic nerve activity (microneurography), and popliteal blood flow (Doppler) during isometric handgrip exercise to fatigue. We quantified and compared transduction via the relation of sympathetic activity to resistance and to conductance and via an adaptation of Poiseuille's relation including pressure, sympathetic activity, and flow. The average relationship between sympathetic activity and resistance (or conductance) was good when assessed over 30-second averages (mean R(2) = 0.49±0.07) but lesser when incorporating beat-by-beat time lags (R(2) = 0.37±0.06). However, in a third of the subjects, these relations provided relatively weak estimates (R(2)0.50 in 20 of 21 individuals), and provided reproducible estimates of transduction. The gain derived from the relation of resistance (but not conductance) was inversely related to transduction (R(2) = 0.37, p
doi_str_mv 10.1371/journal.pone.0053769
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1289070150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478345478</galeid><doaj_id>oai_doaj_org_article_e9a67dce3a3049c697b972562a51fa29</doaj_id><sourcerecordid>A478345478</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-a23dbeeebd46180e877d727d327fd9db725681256ba82e40a3c5f574716e91d73</originalsourceid><addsrcrecordid>eNqNkl2L1DAUhoso7jr6D0QHBNGLGfPRJs2Nsgx-DCws-HUbTpN0mqVNZpN2cf31pk53mcpeSCENp895c970zbLnGK0x5fjdpR-Cg3a9986sESooZ-JBdooFJStGEH14tD_JnsR4OUIlY4-zE0IpYQXCp9mHTQMBVG-C_W3dbhlvuj30jemtWjozBH8NUQ0thGUfwEU9qN56t7Ru2QxdKjzNHtXQRvNsei-yH58-ft98WZ1ffN5uzs5XignSr4BQXRljKp0zXCJTcq454ZoSXmuhK04KVuK0VFASkyOgqqgLnnPMjMCa00X28qC7b32Uk_coMSkF4ggXKBHbA6E9XMp9sB2EG-nByr8FH3YSQrLVGmkEMK6VoUBRLtKEvBLjBAQKXAMRSev9dNpQdSaRLrlvZ6LzL842cuevJS1yQvk4zJtJIPirwcRedjYq07bgjB_GuTllRJCSJPTVP-j97iZqB8mAdbVP56pRVJ7lvKR5Ma6LbH0PlR5tOqtSUGqb6rOGt7OGxPTmV7-DIUa5_fb1_9mLn3P29RHbGGj7Jvp2GMMT52B-AFXwMQZT310yRnLM-e1tyDHncsp5antx_IPumm6DTf8AFv73sg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1289070150</pqid></control><display><type>article</type><title>Characterizing sympathetic neurovascular transduction in humans</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Tan, Can Ozan ; Tamisier, Renaud ; Hamner, J W ; Taylor, J Andrew</creator><contributor>Bearden, Shawn E.</contributor><creatorcontrib>Tan, Can Ozan ; Tamisier, Renaud ; Hamner, J W ; Taylor, J Andrew ; Bearden, Shawn E.</creatorcontrib><description>Despite its critical role for cardiovascular homeostasis in humans, only a few studies have directly probed the transduction of sympathetic nerve activity to regional vascular responses--sympathetic neurovascular transduction. Those that have variably relied on either vascular resistance or vascular conductance to quantify the responses. However, it remains unclear which approach would better reflect the physiology. We assessed the utility of both of these as well as an alternative approach in 21 healthy men. We recorded arterial pressure (Finapres), peroneal sympathetic nerve activity (microneurography), and popliteal blood flow (Doppler) during isometric handgrip exercise to fatigue. We quantified and compared transduction via the relation of sympathetic activity to resistance and to conductance and via an adaptation of Poiseuille's relation including pressure, sympathetic activity, and flow. The average relationship between sympathetic activity and resistance (or conductance) was good when assessed over 30-second averages (mean R(2) = 0.49±0.07) but lesser when incorporating beat-by-beat time lags (R(2) = 0.37±0.06). However, in a third of the subjects, these relations provided relatively weak estimates (R(2)&lt;0.33). In contrast, the Poiseuille relation reflected vascular responses more accurately (R(2) = 0.77±0.03, &gt;0.50 in 20 of 21 individuals), and provided reproducible estimates of transduction. The gain derived from the relation of resistance (but not conductance) was inversely related to transduction (R(2) = 0.37, p&lt;0.05), but with a proportional bias. Thus, vascular resistance and conductance may not always be reliable surrogates for regional sympathetic neurovascular transduction, and assessment from a Poiseuille relation between pressure, sympathetic nerve activity, and flow may provide a better foundation to further explore differences in transduction in humans.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0053769</identifier><identifier>PMID: 23326501</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adult ; Arterial Pressure - physiology ; Biology ; Blood flow ; Blood pressure ; Circulatory system ; Conductance ; Exercise - physiology ; Fatigue ; Hand Strength - physiology ; Hemodynamics ; Homeostasis ; Humans ; Isometric ; Leg - blood supply ; Leg - physiology ; Male ; Medicine ; Microneurography ; Middle Aged ; Muscle, Skeletal - blood supply ; Muscle, Skeletal - innervation ; Muscle, Skeletal - physiology ; Nitric oxide ; Regional analysis ; Regional Blood Flow - physiology ; Resistance ; Rodents ; Sympathetic Nervous System - blood supply ; Sympathetic Nervous System - physiology ; Vascular Resistance - physiology</subject><ispartof>PloS one, 2013-01, Vol.8 (1), p.e53769-e53769</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Tan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Tan et al 2013 Tan et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-a23dbeeebd46180e877d727d327fd9db725681256ba82e40a3c5f574716e91d73</citedby><cites>FETCH-LOGICAL-c692t-a23dbeeebd46180e877d727d327fd9db725681256ba82e40a3c5f574716e91d73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3542370/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3542370/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53770,53772,79347,79348</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23326501$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Bearden, Shawn E.</contributor><creatorcontrib>Tan, Can Ozan</creatorcontrib><creatorcontrib>Tamisier, Renaud</creatorcontrib><creatorcontrib>Hamner, J W</creatorcontrib><creatorcontrib>Taylor, J Andrew</creatorcontrib><title>Characterizing sympathetic neurovascular transduction in humans</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Despite its critical role for cardiovascular homeostasis in humans, only a few studies have directly probed the transduction of sympathetic nerve activity to regional vascular responses--sympathetic neurovascular transduction. Those that have variably relied on either vascular resistance or vascular conductance to quantify the responses. However, it remains unclear which approach would better reflect the physiology. We assessed the utility of both of these as well as an alternative approach in 21 healthy men. We recorded arterial pressure (Finapres), peroneal sympathetic nerve activity (microneurography), and popliteal blood flow (Doppler) during isometric handgrip exercise to fatigue. We quantified and compared transduction via the relation of sympathetic activity to resistance and to conductance and via an adaptation of Poiseuille's relation including pressure, sympathetic activity, and flow. The average relationship between sympathetic activity and resistance (or conductance) was good when assessed over 30-second averages (mean R(2) = 0.49±0.07) but lesser when incorporating beat-by-beat time lags (R(2) = 0.37±0.06). However, in a third of the subjects, these relations provided relatively weak estimates (R(2)&lt;0.33). In contrast, the Poiseuille relation reflected vascular responses more accurately (R(2) = 0.77±0.03, &gt;0.50 in 20 of 21 individuals), and provided reproducible estimates of transduction. The gain derived from the relation of resistance (but not conductance) was inversely related to transduction (R(2) = 0.37, p&lt;0.05), but with a proportional bias. Thus, vascular resistance and conductance may not always be reliable surrogates for regional sympathetic neurovascular transduction, and assessment from a Poiseuille relation between pressure, sympathetic nerve activity, and flow may provide a better foundation to further explore differences in transduction in humans.</description><subject>Adult</subject><subject>Arterial Pressure - physiology</subject><subject>Biology</subject><subject>Blood flow</subject><subject>Blood pressure</subject><subject>Circulatory system</subject><subject>Conductance</subject><subject>Exercise - physiology</subject><subject>Fatigue</subject><subject>Hand Strength - physiology</subject><subject>Hemodynamics</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Isometric</subject><subject>Leg - blood supply</subject><subject>Leg - physiology</subject><subject>Male</subject><subject>Medicine</subject><subject>Microneurography</subject><subject>Middle Aged</subject><subject>Muscle, Skeletal - blood supply</subject><subject>Muscle, Skeletal - innervation</subject><subject>Muscle, Skeletal - physiology</subject><subject>Nitric oxide</subject><subject>Regional analysis</subject><subject>Regional Blood Flow - physiology</subject><subject>Resistance</subject><subject>Rodents</subject><subject>Sympathetic Nervous System - blood supply</subject><subject>Sympathetic Nervous System - physiology</subject><subject>Vascular Resistance - physiology</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAUhoso7jr6D0QHBNGLGfPRJs2Nsgx-DCws-HUbTpN0mqVNZpN2cf31pk53mcpeSCENp895c970zbLnGK0x5fjdpR-Cg3a9986sESooZ-JBdooFJStGEH14tD_JnsR4OUIlY4-zE0IpYQXCp9mHTQMBVG-C_W3dbhlvuj30jemtWjozBH8NUQ0thGUfwEU9qN56t7Ru2QxdKjzNHtXQRvNsei-yH58-ft98WZ1ffN5uzs5XignSr4BQXRljKp0zXCJTcq454ZoSXmuhK04KVuK0VFASkyOgqqgLnnPMjMCa00X28qC7b32Uk_coMSkF4ggXKBHbA6E9XMp9sB2EG-nByr8FH3YSQrLVGmkEMK6VoUBRLtKEvBLjBAQKXAMRSev9dNpQdSaRLrlvZ6LzL842cuevJS1yQvk4zJtJIPirwcRedjYq07bgjB_GuTllRJCSJPTVP-j97iZqB8mAdbVP56pRVJ7lvKR5Ma6LbH0PlR5tOqtSUGqb6rOGt7OGxPTmV7-DIUa5_fb1_9mLn3P29RHbGGj7Jvp2GMMT52B-AFXwMQZT310yRnLM-e1tyDHncsp5antx_IPumm6DTf8AFv73sg</recordid><startdate>20130110</startdate><enddate>20130110</enddate><creator>Tan, Can Ozan</creator><creator>Tamisier, Renaud</creator><creator>Hamner, J W</creator><creator>Taylor, J Andrew</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20130110</creationdate><title>Characterizing sympathetic neurovascular transduction in humans</title><author>Tan, Can Ozan ; Tamisier, Renaud ; Hamner, J W ; Taylor, J Andrew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-a23dbeeebd46180e877d727d327fd9db725681256ba82e40a3c5f574716e91d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adult</topic><topic>Arterial Pressure - physiology</topic><topic>Biology</topic><topic>Blood flow</topic><topic>Blood pressure</topic><topic>Circulatory system</topic><topic>Conductance</topic><topic>Exercise - physiology</topic><topic>Fatigue</topic><topic>Hand Strength - physiology</topic><topic>Hemodynamics</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Isometric</topic><topic>Leg - blood supply</topic><topic>Leg - physiology</topic><topic>Male</topic><topic>Medicine</topic><topic>Microneurography</topic><topic>Middle Aged</topic><topic>Muscle, Skeletal - blood supply</topic><topic>Muscle, Skeletal - innervation</topic><topic>Muscle, Skeletal - physiology</topic><topic>Nitric oxide</topic><topic>Regional analysis</topic><topic>Regional Blood Flow - physiology</topic><topic>Resistance</topic><topic>Rodents</topic><topic>Sympathetic Nervous System - blood supply</topic><topic>Sympathetic Nervous System - physiology</topic><topic>Vascular Resistance - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Can Ozan</creatorcontrib><creatorcontrib>Tamisier, Renaud</creatorcontrib><creatorcontrib>Hamner, J W</creatorcontrib><creatorcontrib>Taylor, J Andrew</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Can Ozan</au><au>Tamisier, Renaud</au><au>Hamner, J W</au><au>Taylor, J Andrew</au><au>Bearden, Shawn E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterizing sympathetic neurovascular transduction in humans</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-01-10</date><risdate>2013</risdate><volume>8</volume><issue>1</issue><spage>e53769</spage><epage>e53769</epage><pages>e53769-e53769</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Despite its critical role for cardiovascular homeostasis in humans, only a few studies have directly probed the transduction of sympathetic nerve activity to regional vascular responses--sympathetic neurovascular transduction. Those that have variably relied on either vascular resistance or vascular conductance to quantify the responses. However, it remains unclear which approach would better reflect the physiology. We assessed the utility of both of these as well as an alternative approach in 21 healthy men. We recorded arterial pressure (Finapres), peroneal sympathetic nerve activity (microneurography), and popliteal blood flow (Doppler) during isometric handgrip exercise to fatigue. We quantified and compared transduction via the relation of sympathetic activity to resistance and to conductance and via an adaptation of Poiseuille's relation including pressure, sympathetic activity, and flow. The average relationship between sympathetic activity and resistance (or conductance) was good when assessed over 30-second averages (mean R(2) = 0.49±0.07) but lesser when incorporating beat-by-beat time lags (R(2) = 0.37±0.06). However, in a third of the subjects, these relations provided relatively weak estimates (R(2)&lt;0.33). In contrast, the Poiseuille relation reflected vascular responses more accurately (R(2) = 0.77±0.03, &gt;0.50 in 20 of 21 individuals), and provided reproducible estimates of transduction. The gain derived from the relation of resistance (but not conductance) was inversely related to transduction (R(2) = 0.37, p&lt;0.05), but with a proportional bias. Thus, vascular resistance and conductance may not always be reliable surrogates for regional sympathetic neurovascular transduction, and assessment from a Poiseuille relation between pressure, sympathetic nerve activity, and flow may provide a better foundation to further explore differences in transduction in humans.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23326501</pmid><doi>10.1371/journal.pone.0053769</doi><tpages>e53769</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2013-01, Vol.8 (1), p.e53769-e53769
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1289070150
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Adult
Arterial Pressure - physiology
Biology
Blood flow
Blood pressure
Circulatory system
Conductance
Exercise - physiology
Fatigue
Hand Strength - physiology
Hemodynamics
Homeostasis
Humans
Isometric
Leg - blood supply
Leg - physiology
Male
Medicine
Microneurography
Middle Aged
Muscle, Skeletal - blood supply
Muscle, Skeletal - innervation
Muscle, Skeletal - physiology
Nitric oxide
Regional analysis
Regional Blood Flow - physiology
Resistance
Rodents
Sympathetic Nervous System - blood supply
Sympathetic Nervous System - physiology
Vascular Resistance - physiology
title Characterizing sympathetic neurovascular transduction in humans
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T04%3A18%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterizing%20sympathetic%20neurovascular%20transduction%20in%20humans&rft.jtitle=PloS%20one&rft.au=Tan,%20Can%20Ozan&rft.date=2013-01-10&rft.volume=8&rft.issue=1&rft.spage=e53769&rft.epage=e53769&rft.pages=e53769-e53769&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0053769&rft_dat=%3Cgale_plos_%3EA478345478%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1289070150&rft_id=info:pmid/23326501&rft_galeid=A478345478&rft_doaj_id=oai_doaj_org_article_e9a67dce3a3049c697b972562a51fa29&rfr_iscdi=true