Characterizing sympathetic neurovascular transduction in humans
Despite its critical role for cardiovascular homeostasis in humans, only a few studies have directly probed the transduction of sympathetic nerve activity to regional vascular responses--sympathetic neurovascular transduction. Those that have variably relied on either vascular resistance or vascular...
Gespeichert in:
Veröffentlicht in: | PloS one 2013-01, Vol.8 (1), p.e53769-e53769 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e53769 |
---|---|
container_issue | 1 |
container_start_page | e53769 |
container_title | PloS one |
container_volume | 8 |
creator | Tan, Can Ozan Tamisier, Renaud Hamner, J W Taylor, J Andrew |
description | Despite its critical role for cardiovascular homeostasis in humans, only a few studies have directly probed the transduction of sympathetic nerve activity to regional vascular responses--sympathetic neurovascular transduction. Those that have variably relied on either vascular resistance or vascular conductance to quantify the responses. However, it remains unclear which approach would better reflect the physiology. We assessed the utility of both of these as well as an alternative approach in 21 healthy men. We recorded arterial pressure (Finapres), peroneal sympathetic nerve activity (microneurography), and popliteal blood flow (Doppler) during isometric handgrip exercise to fatigue. We quantified and compared transduction via the relation of sympathetic activity to resistance and to conductance and via an adaptation of Poiseuille's relation including pressure, sympathetic activity, and flow. The average relationship between sympathetic activity and resistance (or conductance) was good when assessed over 30-second averages (mean R(2) = 0.49±0.07) but lesser when incorporating beat-by-beat time lags (R(2) = 0.37±0.06). However, in a third of the subjects, these relations provided relatively weak estimates (R(2)0.50 in 20 of 21 individuals), and provided reproducible estimates of transduction. The gain derived from the relation of resistance (but not conductance) was inversely related to transduction (R(2) = 0.37, p |
doi_str_mv | 10.1371/journal.pone.0053769 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1289070150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478345478</galeid><doaj_id>oai_doaj_org_article_e9a67dce3a3049c697b972562a51fa29</doaj_id><sourcerecordid>A478345478</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-a23dbeeebd46180e877d727d327fd9db725681256ba82e40a3c5f574716e91d73</originalsourceid><addsrcrecordid>eNqNkl2L1DAUhoso7jr6D0QHBNGLGfPRJs2Nsgx-DCws-HUbTpN0mqVNZpN2cf31pk53mcpeSCENp895c970zbLnGK0x5fjdpR-Cg3a9986sESooZ-JBdooFJStGEH14tD_JnsR4OUIlY4-zE0IpYQXCp9mHTQMBVG-C_W3dbhlvuj30jemtWjozBH8NUQ0thGUfwEU9qN56t7Ru2QxdKjzNHtXQRvNsei-yH58-ft98WZ1ffN5uzs5XignSr4BQXRljKp0zXCJTcq454ZoSXmuhK04KVuK0VFASkyOgqqgLnnPMjMCa00X28qC7b32Uk_coMSkF4ggXKBHbA6E9XMp9sB2EG-nByr8FH3YSQrLVGmkEMK6VoUBRLtKEvBLjBAQKXAMRSev9dNpQdSaRLrlvZ6LzL842cuevJS1yQvk4zJtJIPirwcRedjYq07bgjB_GuTllRJCSJPTVP-j97iZqB8mAdbVP56pRVJ7lvKR5Ma6LbH0PlR5tOqtSUGqb6rOGt7OGxPTmV7-DIUa5_fb1_9mLn3P29RHbGGj7Jvp2GMMT52B-AFXwMQZT310yRnLM-e1tyDHncsp5antx_IPumm6DTf8AFv73sg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1289070150</pqid></control><display><type>article</type><title>Characterizing sympathetic neurovascular transduction in humans</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Tan, Can Ozan ; Tamisier, Renaud ; Hamner, J W ; Taylor, J Andrew</creator><contributor>Bearden, Shawn E.</contributor><creatorcontrib>Tan, Can Ozan ; Tamisier, Renaud ; Hamner, J W ; Taylor, J Andrew ; Bearden, Shawn E.</creatorcontrib><description>Despite its critical role for cardiovascular homeostasis in humans, only a few studies have directly probed the transduction of sympathetic nerve activity to regional vascular responses--sympathetic neurovascular transduction. Those that have variably relied on either vascular resistance or vascular conductance to quantify the responses. However, it remains unclear which approach would better reflect the physiology. We assessed the utility of both of these as well as an alternative approach in 21 healthy men. We recorded arterial pressure (Finapres), peroneal sympathetic nerve activity (microneurography), and popliteal blood flow (Doppler) during isometric handgrip exercise to fatigue. We quantified and compared transduction via the relation of sympathetic activity to resistance and to conductance and via an adaptation of Poiseuille's relation including pressure, sympathetic activity, and flow. The average relationship between sympathetic activity and resistance (or conductance) was good when assessed over 30-second averages (mean R(2) = 0.49±0.07) but lesser when incorporating beat-by-beat time lags (R(2) = 0.37±0.06). However, in a third of the subjects, these relations provided relatively weak estimates (R(2)<0.33). In contrast, the Poiseuille relation reflected vascular responses more accurately (R(2) = 0.77±0.03, >0.50 in 20 of 21 individuals), and provided reproducible estimates of transduction. The gain derived from the relation of resistance (but not conductance) was inversely related to transduction (R(2) = 0.37, p<0.05), but with a proportional bias. Thus, vascular resistance and conductance may not always be reliable surrogates for regional sympathetic neurovascular transduction, and assessment from a Poiseuille relation between pressure, sympathetic nerve activity, and flow may provide a better foundation to further explore differences in transduction in humans.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0053769</identifier><identifier>PMID: 23326501</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adult ; Arterial Pressure - physiology ; Biology ; Blood flow ; Blood pressure ; Circulatory system ; Conductance ; Exercise - physiology ; Fatigue ; Hand Strength - physiology ; Hemodynamics ; Homeostasis ; Humans ; Isometric ; Leg - blood supply ; Leg - physiology ; Male ; Medicine ; Microneurography ; Middle Aged ; Muscle, Skeletal - blood supply ; Muscle, Skeletal - innervation ; Muscle, Skeletal - physiology ; Nitric oxide ; Regional analysis ; Regional Blood Flow - physiology ; Resistance ; Rodents ; Sympathetic Nervous System - blood supply ; Sympathetic Nervous System - physiology ; Vascular Resistance - physiology</subject><ispartof>PloS one, 2013-01, Vol.8 (1), p.e53769-e53769</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Tan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Tan et al 2013 Tan et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-a23dbeeebd46180e877d727d327fd9db725681256ba82e40a3c5f574716e91d73</citedby><cites>FETCH-LOGICAL-c692t-a23dbeeebd46180e877d727d327fd9db725681256ba82e40a3c5f574716e91d73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3542370/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3542370/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53770,53772,79347,79348</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23326501$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Bearden, Shawn E.</contributor><creatorcontrib>Tan, Can Ozan</creatorcontrib><creatorcontrib>Tamisier, Renaud</creatorcontrib><creatorcontrib>Hamner, J W</creatorcontrib><creatorcontrib>Taylor, J Andrew</creatorcontrib><title>Characterizing sympathetic neurovascular transduction in humans</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Despite its critical role for cardiovascular homeostasis in humans, only a few studies have directly probed the transduction of sympathetic nerve activity to regional vascular responses--sympathetic neurovascular transduction. Those that have variably relied on either vascular resistance or vascular conductance to quantify the responses. However, it remains unclear which approach would better reflect the physiology. We assessed the utility of both of these as well as an alternative approach in 21 healthy men. We recorded arterial pressure (Finapres), peroneal sympathetic nerve activity (microneurography), and popliteal blood flow (Doppler) during isometric handgrip exercise to fatigue. We quantified and compared transduction via the relation of sympathetic activity to resistance and to conductance and via an adaptation of Poiseuille's relation including pressure, sympathetic activity, and flow. The average relationship between sympathetic activity and resistance (or conductance) was good when assessed over 30-second averages (mean R(2) = 0.49±0.07) but lesser when incorporating beat-by-beat time lags (R(2) = 0.37±0.06). However, in a third of the subjects, these relations provided relatively weak estimates (R(2)<0.33). In contrast, the Poiseuille relation reflected vascular responses more accurately (R(2) = 0.77±0.03, >0.50 in 20 of 21 individuals), and provided reproducible estimates of transduction. The gain derived from the relation of resistance (but not conductance) was inversely related to transduction (R(2) = 0.37, p<0.05), but with a proportional bias. Thus, vascular resistance and conductance may not always be reliable surrogates for regional sympathetic neurovascular transduction, and assessment from a Poiseuille relation between pressure, sympathetic nerve activity, and flow may provide a better foundation to further explore differences in transduction in humans.</description><subject>Adult</subject><subject>Arterial Pressure - physiology</subject><subject>Biology</subject><subject>Blood flow</subject><subject>Blood pressure</subject><subject>Circulatory system</subject><subject>Conductance</subject><subject>Exercise - physiology</subject><subject>Fatigue</subject><subject>Hand Strength - physiology</subject><subject>Hemodynamics</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Isometric</subject><subject>Leg - blood supply</subject><subject>Leg - physiology</subject><subject>Male</subject><subject>Medicine</subject><subject>Microneurography</subject><subject>Middle Aged</subject><subject>Muscle, Skeletal - blood supply</subject><subject>Muscle, Skeletal - innervation</subject><subject>Muscle, Skeletal - physiology</subject><subject>Nitric oxide</subject><subject>Regional analysis</subject><subject>Regional Blood Flow - physiology</subject><subject>Resistance</subject><subject>Rodents</subject><subject>Sympathetic Nervous System - blood supply</subject><subject>Sympathetic Nervous System - physiology</subject><subject>Vascular Resistance - physiology</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAUhoso7jr6D0QHBNGLGfPRJs2Nsgx-DCws-HUbTpN0mqVNZpN2cf31pk53mcpeSCENp895c970zbLnGK0x5fjdpR-Cg3a9986sESooZ-JBdooFJStGEH14tD_JnsR4OUIlY4-zE0IpYQXCp9mHTQMBVG-C_W3dbhlvuj30jemtWjozBH8NUQ0thGUfwEU9qN56t7Ru2QxdKjzNHtXQRvNsei-yH58-ft98WZ1ffN5uzs5XignSr4BQXRljKp0zXCJTcq454ZoSXmuhK04KVuK0VFASkyOgqqgLnnPMjMCa00X28qC7b32Uk_coMSkF4ggXKBHbA6E9XMp9sB2EG-nByr8FH3YSQrLVGmkEMK6VoUBRLtKEvBLjBAQKXAMRSev9dNpQdSaRLrlvZ6LzL842cuevJS1yQvk4zJtJIPirwcRedjYq07bgjB_GuTllRJCSJPTVP-j97iZqB8mAdbVP56pRVJ7lvKR5Ma6LbH0PlR5tOqtSUGqb6rOGt7OGxPTmV7-DIUa5_fb1_9mLn3P29RHbGGj7Jvp2GMMT52B-AFXwMQZT310yRnLM-e1tyDHncsp5antx_IPumm6DTf8AFv73sg</recordid><startdate>20130110</startdate><enddate>20130110</enddate><creator>Tan, Can Ozan</creator><creator>Tamisier, Renaud</creator><creator>Hamner, J W</creator><creator>Taylor, J Andrew</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20130110</creationdate><title>Characterizing sympathetic neurovascular transduction in humans</title><author>Tan, Can Ozan ; Tamisier, Renaud ; Hamner, J W ; Taylor, J Andrew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-a23dbeeebd46180e877d727d327fd9db725681256ba82e40a3c5f574716e91d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adult</topic><topic>Arterial Pressure - physiology</topic><topic>Biology</topic><topic>Blood flow</topic><topic>Blood pressure</topic><topic>Circulatory system</topic><topic>Conductance</topic><topic>Exercise - physiology</topic><topic>Fatigue</topic><topic>Hand Strength - physiology</topic><topic>Hemodynamics</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Isometric</topic><topic>Leg - blood supply</topic><topic>Leg - physiology</topic><topic>Male</topic><topic>Medicine</topic><topic>Microneurography</topic><topic>Middle Aged</topic><topic>Muscle, Skeletal - blood supply</topic><topic>Muscle, Skeletal - innervation</topic><topic>Muscle, Skeletal - physiology</topic><topic>Nitric oxide</topic><topic>Regional analysis</topic><topic>Regional Blood Flow - physiology</topic><topic>Resistance</topic><topic>Rodents</topic><topic>Sympathetic Nervous System - blood supply</topic><topic>Sympathetic Nervous System - physiology</topic><topic>Vascular Resistance - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Can Ozan</creatorcontrib><creatorcontrib>Tamisier, Renaud</creatorcontrib><creatorcontrib>Hamner, J W</creatorcontrib><creatorcontrib>Taylor, J Andrew</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Can Ozan</au><au>Tamisier, Renaud</au><au>Hamner, J W</au><au>Taylor, J Andrew</au><au>Bearden, Shawn E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterizing sympathetic neurovascular transduction in humans</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-01-10</date><risdate>2013</risdate><volume>8</volume><issue>1</issue><spage>e53769</spage><epage>e53769</epage><pages>e53769-e53769</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Despite its critical role for cardiovascular homeostasis in humans, only a few studies have directly probed the transduction of sympathetic nerve activity to regional vascular responses--sympathetic neurovascular transduction. Those that have variably relied on either vascular resistance or vascular conductance to quantify the responses. However, it remains unclear which approach would better reflect the physiology. We assessed the utility of both of these as well as an alternative approach in 21 healthy men. We recorded arterial pressure (Finapres), peroneal sympathetic nerve activity (microneurography), and popliteal blood flow (Doppler) during isometric handgrip exercise to fatigue. We quantified and compared transduction via the relation of sympathetic activity to resistance and to conductance and via an adaptation of Poiseuille's relation including pressure, sympathetic activity, and flow. The average relationship between sympathetic activity and resistance (or conductance) was good when assessed over 30-second averages (mean R(2) = 0.49±0.07) but lesser when incorporating beat-by-beat time lags (R(2) = 0.37±0.06). However, in a third of the subjects, these relations provided relatively weak estimates (R(2)<0.33). In contrast, the Poiseuille relation reflected vascular responses more accurately (R(2) = 0.77±0.03, >0.50 in 20 of 21 individuals), and provided reproducible estimates of transduction. The gain derived from the relation of resistance (but not conductance) was inversely related to transduction (R(2) = 0.37, p<0.05), but with a proportional bias. Thus, vascular resistance and conductance may not always be reliable surrogates for regional sympathetic neurovascular transduction, and assessment from a Poiseuille relation between pressure, sympathetic nerve activity, and flow may provide a better foundation to further explore differences in transduction in humans.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23326501</pmid><doi>10.1371/journal.pone.0053769</doi><tpages>e53769</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2013-01, Vol.8 (1), p.e53769-e53769 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1289070150 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Adult Arterial Pressure - physiology Biology Blood flow Blood pressure Circulatory system Conductance Exercise - physiology Fatigue Hand Strength - physiology Hemodynamics Homeostasis Humans Isometric Leg - blood supply Leg - physiology Male Medicine Microneurography Middle Aged Muscle, Skeletal - blood supply Muscle, Skeletal - innervation Muscle, Skeletal - physiology Nitric oxide Regional analysis Regional Blood Flow - physiology Resistance Rodents Sympathetic Nervous System - blood supply Sympathetic Nervous System - physiology Vascular Resistance - physiology |
title | Characterizing sympathetic neurovascular transduction in humans |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T04%3A18%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterizing%20sympathetic%20neurovascular%20transduction%20in%20humans&rft.jtitle=PloS%20one&rft.au=Tan,%20Can%20Ozan&rft.date=2013-01-10&rft.volume=8&rft.issue=1&rft.spage=e53769&rft.epage=e53769&rft.pages=e53769-e53769&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0053769&rft_dat=%3Cgale_plos_%3EA478345478%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1289070150&rft_id=info:pmid/23326501&rft_galeid=A478345478&rft_doaj_id=oai_doaj_org_article_e9a67dce3a3049c697b972562a51fa29&rfr_iscdi=true |