Effective preparation of Plasmodium vivax field isolates for high-throughput whole genome sequencing
Whole genome sequencing (WGS) of Plasmodium vivax is problematic due to the reliance on clinical isolates which are generally low in parasitaemia and sample volume. Furthermore, clinical isolates contain a significant contaminating background of host DNA which confounds efforts to map short read seq...
Gespeichert in:
Veröffentlicht in: | PloS one 2013-01, Vol.8 (1), p.e53160-e53160 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e53160 |
---|---|
container_issue | 1 |
container_start_page | e53160 |
container_title | PloS one |
container_volume | 8 |
creator | Auburn, Sarah Marfurt, Jutta Maslen, Gareth Campino, Susana Ruano Rubio, Valentin Manske, Magnus Machunter, Barbara Kenangalem, Enny Noviyanti, Rintis Trianty, Leily Sebayang, Boni Wirjanata, Grennady Sriprawat, Kanlaya Alcock, Daniel Macinnis, Bronwyn Miotto, Olivo Clark, Taane G Russell, Bruce Anstey, Nicholas M Nosten, François Kwiatkowski, Dominic P Price, Ric N |
description | Whole genome sequencing (WGS) of Plasmodium vivax is problematic due to the reliance on clinical isolates which are generally low in parasitaemia and sample volume. Furthermore, clinical isolates contain a significant contaminating background of host DNA which confounds efforts to map short read sequence of the target P. vivax DNA. Here, we discuss a methodology to significantly improve the success of P. vivax WGS on natural (non-adapted) patient isolates. Using 37 patient isolates from Indonesia, Thailand, and travellers, we assessed the application of CF11-based white blood cell filtration alone and in combination with short term ex vivo schizont maturation. Although CF11 filtration reduced human DNA contamination in 8 Indonesian isolates tested, additional short-term culture increased the P. vivax DNA yield from a median of 0.15 to 6.2 ng µl(-1) packed red blood cells (pRBCs) (p = 0.001) and reduced the human DNA percentage from a median of 33.9% to 6.22% (p = 0.008). Furthermore, post-CF11 and culture samples from Thailand gave a median P. vivax DNA yield of 2.34 ng µl(-1) pRBCs, and 2.65% human DNA. In 22 P. vivax patient isolates prepared with the 2-step method, we demonstrate high depth (median 654X coverage) and breadth (≥89%) of coverage on the Illumina GAII and HiSeq platforms. In contrast to the A+T-rich P. falciparum genome, negligible bias was observed in coverage depth between coding and non-coding regions of the P. vivax genome. This uniform coverage will greatly facilitate the detection of SNPs and copy number variants across the genome, enabling unbiased exploration of the natural diversity in P. vivax populations. |
doi_str_mv | 10.1371/journal.pone.0053160 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1289061113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478431619</galeid><doaj_id>oai_doaj_org_article_b2b44adb48a741479219665af047e369</doaj_id><sourcerecordid>A478431619</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-2036900475b0cc9695753089e6c04effb8b475700dbe08d691a6397007dd77c93</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7rr6D0QLgujFjEmTJu2NsCyrDiys-HUb0vSkzdA2NUnH9d-bOrPLVPZCepEmec6bNyfnJMlzjNaYcPxuayc3yG492gHWCOUEM_QgOcUlyVYsQ-Th0f9J8sT77QwVjD1OTjJCUIFzeprUl1qDCmYH6ehglE4GY4fU6vRzJ31vazP16c7s5E2qDXR1arztZACfauvS1jTtKrTOTk07TiH91doO0gYG20Pq4ecEgzJD8zR5pGXn4dlhPEu-f7j8dvFpdXX9cXNxfrVSrMzCKhplJUKU5xVSqmRlzvPoswSmEAWtq6KKexyhugJU1KzEkpEyznldc65Kcpa83OuOnfXikCAvcFaUiGGMSSQ2e6K2citGZ3rpfgsrjfi7YF0jpAtGdSCqrKJU1hUtJKeY8jLDJWO51NEgRKNR6_3htKnqoVYwBCe7hehyZzCtaOxOkJxwzooo8OYg4GxMlQ-iN15B18kB7DT75oSSgtM8oq_-Qe-_3YFqZLyAGbSN56pZVJxTXtBYInj2vb6Hil8NvVGxmrSJ64uAt4uAyAS4CY2cvBebr1_-n73-sWRfH7EtyC60sbqmuQL9EqR7UDnrvQN9l2SMxNwMt9kQczOIQzPEsBfHD3QXdFv95A-rnwO6</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1289061113</pqid></control><display><type>article</type><title>Effective preparation of Plasmodium vivax field isolates for high-throughput whole genome sequencing</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Auburn, Sarah ; Marfurt, Jutta ; Maslen, Gareth ; Campino, Susana ; Ruano Rubio, Valentin ; Manske, Magnus ; Machunter, Barbara ; Kenangalem, Enny ; Noviyanti, Rintis ; Trianty, Leily ; Sebayang, Boni ; Wirjanata, Grennady ; Sriprawat, Kanlaya ; Alcock, Daniel ; Macinnis, Bronwyn ; Miotto, Olivo ; Clark, Taane G ; Russell, Bruce ; Anstey, Nicholas M ; Nosten, François ; Kwiatkowski, Dominic P ; Price, Ric N</creator><contributor>Braga, Erika Martins</contributor><creatorcontrib>Auburn, Sarah ; Marfurt, Jutta ; Maslen, Gareth ; Campino, Susana ; Ruano Rubio, Valentin ; Manske, Magnus ; Machunter, Barbara ; Kenangalem, Enny ; Noviyanti, Rintis ; Trianty, Leily ; Sebayang, Boni ; Wirjanata, Grennady ; Sriprawat, Kanlaya ; Alcock, Daniel ; Macinnis, Bronwyn ; Miotto, Olivo ; Clark, Taane G ; Russell, Bruce ; Anstey, Nicholas M ; Nosten, François ; Kwiatkowski, Dominic P ; Price, Ric N ; Braga, Erika Martins</creatorcontrib><description>Whole genome sequencing (WGS) of Plasmodium vivax is problematic due to the reliance on clinical isolates which are generally low in parasitaemia and sample volume. Furthermore, clinical isolates contain a significant contaminating background of host DNA which confounds efforts to map short read sequence of the target P. vivax DNA. Here, we discuss a methodology to significantly improve the success of P. vivax WGS on natural (non-adapted) patient isolates. Using 37 patient isolates from Indonesia, Thailand, and travellers, we assessed the application of CF11-based white blood cell filtration alone and in combination with short term ex vivo schizont maturation. Although CF11 filtration reduced human DNA contamination in 8 Indonesian isolates tested, additional short-term culture increased the P. vivax DNA yield from a median of 0.15 to 6.2 ng µl(-1) packed red blood cells (pRBCs) (p = 0.001) and reduced the human DNA percentage from a median of 33.9% to 6.22% (p = 0.008). Furthermore, post-CF11 and culture samples from Thailand gave a median P. vivax DNA yield of 2.34 ng µl(-1) pRBCs, and 2.65% human DNA. In 22 P. vivax patient isolates prepared with the 2-step method, we demonstrate high depth (median 654X coverage) and breadth (≥89%) of coverage on the Illumina GAII and HiSeq platforms. In contrast to the A+T-rich P. falciparum genome, negligible bias was observed in coverage depth between coding and non-coding regions of the P. vivax genome. This uniform coverage will greatly facilitate the detection of SNPs and copy number variants across the genome, enabling unbiased exploration of the natural diversity in P. vivax populations.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0053160</identifier><identifier>PMID: 23308154</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Bioinformatics ; Biology ; Blood ; Blood cells ; Cell culture ; Clinical isolates ; Clinical medicine ; Community development ; Contamination ; Copy number ; Councils ; Deoxyribonucleic acid ; DNA ; DNA sequencing ; DNA, Protozoan - genetics ; DNA, Protozoan - isolation & purification ; Erythrocytes ; Filtration ; Gene sequencing ; Genetic aspects ; Genetic testing ; Genome, Protozoan ; Genomes ; Genomics ; High-Throughput Nucleotide Sequencing - methods ; Humans ; Leukocytes ; Malaria ; Malaria, Vivax - diagnosis ; Malaria, Vivax - parasitology ; Medical research ; Medicine ; Molecular biology ; Nucleotide sequence ; Parasites ; Plasmodium ; Plasmodium falciparum ; Plasmodium vivax ; Plasmodium vivax - genetics ; Plasmodium vivax - isolation & purification ; Real-Time Polymerase Chain Reaction ; Red blood cells ; Single-nucleotide polymorphism ; Travellers ; Tropical diseases ; White blood cells</subject><ispartof>PloS one, 2013-01, Vol.8 (1), p.e53160-e53160</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Auburn et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Auburn et al 2013 Auburn et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-2036900475b0cc9695753089e6c04effb8b475700dbe08d691a6397007dd77c93</citedby><cites>FETCH-LOGICAL-c692t-2036900475b0cc9695753089e6c04effb8b475700dbe08d691a6397007dd77c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3537768/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3537768/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23308154$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Braga, Erika Martins</contributor><creatorcontrib>Auburn, Sarah</creatorcontrib><creatorcontrib>Marfurt, Jutta</creatorcontrib><creatorcontrib>Maslen, Gareth</creatorcontrib><creatorcontrib>Campino, Susana</creatorcontrib><creatorcontrib>Ruano Rubio, Valentin</creatorcontrib><creatorcontrib>Manske, Magnus</creatorcontrib><creatorcontrib>Machunter, Barbara</creatorcontrib><creatorcontrib>Kenangalem, Enny</creatorcontrib><creatorcontrib>Noviyanti, Rintis</creatorcontrib><creatorcontrib>Trianty, Leily</creatorcontrib><creatorcontrib>Sebayang, Boni</creatorcontrib><creatorcontrib>Wirjanata, Grennady</creatorcontrib><creatorcontrib>Sriprawat, Kanlaya</creatorcontrib><creatorcontrib>Alcock, Daniel</creatorcontrib><creatorcontrib>Macinnis, Bronwyn</creatorcontrib><creatorcontrib>Miotto, Olivo</creatorcontrib><creatorcontrib>Clark, Taane G</creatorcontrib><creatorcontrib>Russell, Bruce</creatorcontrib><creatorcontrib>Anstey, Nicholas M</creatorcontrib><creatorcontrib>Nosten, François</creatorcontrib><creatorcontrib>Kwiatkowski, Dominic P</creatorcontrib><creatorcontrib>Price, Ric N</creatorcontrib><title>Effective preparation of Plasmodium vivax field isolates for high-throughput whole genome sequencing</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Whole genome sequencing (WGS) of Plasmodium vivax is problematic due to the reliance on clinical isolates which are generally low in parasitaemia and sample volume. Furthermore, clinical isolates contain a significant contaminating background of host DNA which confounds efforts to map short read sequence of the target P. vivax DNA. Here, we discuss a methodology to significantly improve the success of P. vivax WGS on natural (non-adapted) patient isolates. Using 37 patient isolates from Indonesia, Thailand, and travellers, we assessed the application of CF11-based white blood cell filtration alone and in combination with short term ex vivo schizont maturation. Although CF11 filtration reduced human DNA contamination in 8 Indonesian isolates tested, additional short-term culture increased the P. vivax DNA yield from a median of 0.15 to 6.2 ng µl(-1) packed red blood cells (pRBCs) (p = 0.001) and reduced the human DNA percentage from a median of 33.9% to 6.22% (p = 0.008). Furthermore, post-CF11 and culture samples from Thailand gave a median P. vivax DNA yield of 2.34 ng µl(-1) pRBCs, and 2.65% human DNA. In 22 P. vivax patient isolates prepared with the 2-step method, we demonstrate high depth (median 654X coverage) and breadth (≥89%) of coverage on the Illumina GAII and HiSeq platforms. In contrast to the A+T-rich P. falciparum genome, negligible bias was observed in coverage depth between coding and non-coding regions of the P. vivax genome. This uniform coverage will greatly facilitate the detection of SNPs and copy number variants across the genome, enabling unbiased exploration of the natural diversity in P. vivax populations.</description><subject>Analysis</subject><subject>Bioinformatics</subject><subject>Biology</subject><subject>Blood</subject><subject>Blood cells</subject><subject>Cell culture</subject><subject>Clinical isolates</subject><subject>Clinical medicine</subject><subject>Community development</subject><subject>Contamination</subject><subject>Copy number</subject><subject>Councils</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA sequencing</subject><subject>DNA, Protozoan - genetics</subject><subject>DNA, Protozoan - isolation & purification</subject><subject>Erythrocytes</subject><subject>Filtration</subject><subject>Gene sequencing</subject><subject>Genetic aspects</subject><subject>Genetic testing</subject><subject>Genome, Protozoan</subject><subject>Genomes</subject><subject>Genomics</subject><subject>High-Throughput Nucleotide Sequencing - methods</subject><subject>Humans</subject><subject>Leukocytes</subject><subject>Malaria</subject><subject>Malaria, Vivax - diagnosis</subject><subject>Malaria, Vivax - parasitology</subject><subject>Medical research</subject><subject>Medicine</subject><subject>Molecular biology</subject><subject>Nucleotide sequence</subject><subject>Parasites</subject><subject>Plasmodium</subject><subject>Plasmodium falciparum</subject><subject>Plasmodium vivax</subject><subject>Plasmodium vivax - genetics</subject><subject>Plasmodium vivax - isolation & purification</subject><subject>Real-Time Polymerase Chain Reaction</subject><subject>Red blood cells</subject><subject>Single-nucleotide polymorphism</subject><subject>Travellers</subject><subject>Tropical diseases</subject><subject>White blood cells</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7rr6D0QLgujFjEmTJu2NsCyrDiys-HUb0vSkzdA2NUnH9d-bOrPLVPZCepEmec6bNyfnJMlzjNaYcPxuayc3yG492gHWCOUEM_QgOcUlyVYsQ-Th0f9J8sT77QwVjD1OTjJCUIFzeprUl1qDCmYH6ehglE4GY4fU6vRzJ31vazP16c7s5E2qDXR1arztZACfauvS1jTtKrTOTk07TiH91doO0gYG20Pq4ecEgzJD8zR5pGXn4dlhPEu-f7j8dvFpdXX9cXNxfrVSrMzCKhplJUKU5xVSqmRlzvPoswSmEAWtq6KKexyhugJU1KzEkpEyznldc65Kcpa83OuOnfXikCAvcFaUiGGMSSQ2e6K2citGZ3rpfgsrjfi7YF0jpAtGdSCqrKJU1hUtJKeY8jLDJWO51NEgRKNR6_3htKnqoVYwBCe7hehyZzCtaOxOkJxwzooo8OYg4GxMlQ-iN15B18kB7DT75oSSgtM8oq_-Qe-_3YFqZLyAGbSN56pZVJxTXtBYInj2vb6Hil8NvVGxmrSJ64uAt4uAyAS4CY2cvBebr1_-n73-sWRfH7EtyC60sbqmuQL9EqR7UDnrvQN9l2SMxNwMt9kQczOIQzPEsBfHD3QXdFv95A-rnwO6</recordid><startdate>20130104</startdate><enddate>20130104</enddate><creator>Auburn, Sarah</creator><creator>Marfurt, Jutta</creator><creator>Maslen, Gareth</creator><creator>Campino, Susana</creator><creator>Ruano Rubio, Valentin</creator><creator>Manske, Magnus</creator><creator>Machunter, Barbara</creator><creator>Kenangalem, Enny</creator><creator>Noviyanti, Rintis</creator><creator>Trianty, Leily</creator><creator>Sebayang, Boni</creator><creator>Wirjanata, Grennady</creator><creator>Sriprawat, Kanlaya</creator><creator>Alcock, Daniel</creator><creator>Macinnis, Bronwyn</creator><creator>Miotto, Olivo</creator><creator>Clark, Taane G</creator><creator>Russell, Bruce</creator><creator>Anstey, Nicholas M</creator><creator>Nosten, François</creator><creator>Kwiatkowski, Dominic P</creator><creator>Price, Ric N</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20130104</creationdate><title>Effective preparation of Plasmodium vivax field isolates for high-throughput whole genome sequencing</title><author>Auburn, Sarah ; Marfurt, Jutta ; Maslen, Gareth ; Campino, Susana ; Ruano Rubio, Valentin ; Manske, Magnus ; Machunter, Barbara ; Kenangalem, Enny ; Noviyanti, Rintis ; Trianty, Leily ; Sebayang, Boni ; Wirjanata, Grennady ; Sriprawat, Kanlaya ; Alcock, Daniel ; Macinnis, Bronwyn ; Miotto, Olivo ; Clark, Taane G ; Russell, Bruce ; Anstey, Nicholas M ; Nosten, François ; Kwiatkowski, Dominic P ; Price, Ric N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-2036900475b0cc9695753089e6c04effb8b475700dbe08d691a6397007dd77c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Analysis</topic><topic>Bioinformatics</topic><topic>Biology</topic><topic>Blood</topic><topic>Blood cells</topic><topic>Cell culture</topic><topic>Clinical isolates</topic><topic>Clinical medicine</topic><topic>Community development</topic><topic>Contamination</topic><topic>Copy number</topic><topic>Councils</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA sequencing</topic><topic>DNA, Protozoan - genetics</topic><topic>DNA, Protozoan - isolation & purification</topic><topic>Erythrocytes</topic><topic>Filtration</topic><topic>Gene sequencing</topic><topic>Genetic aspects</topic><topic>Genetic testing</topic><topic>Genome, Protozoan</topic><topic>Genomes</topic><topic>Genomics</topic><topic>High-Throughput Nucleotide Sequencing - methods</topic><topic>Humans</topic><topic>Leukocytes</topic><topic>Malaria</topic><topic>Malaria, Vivax - diagnosis</topic><topic>Malaria, Vivax - parasitology</topic><topic>Medical research</topic><topic>Medicine</topic><topic>Molecular biology</topic><topic>Nucleotide sequence</topic><topic>Parasites</topic><topic>Plasmodium</topic><topic>Plasmodium falciparum</topic><topic>Plasmodium vivax</topic><topic>Plasmodium vivax - genetics</topic><topic>Plasmodium vivax - isolation & purification</topic><topic>Real-Time Polymerase Chain Reaction</topic><topic>Red blood cells</topic><topic>Single-nucleotide polymorphism</topic><topic>Travellers</topic><topic>Tropical diseases</topic><topic>White blood cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Auburn, Sarah</creatorcontrib><creatorcontrib>Marfurt, Jutta</creatorcontrib><creatorcontrib>Maslen, Gareth</creatorcontrib><creatorcontrib>Campino, Susana</creatorcontrib><creatorcontrib>Ruano Rubio, Valentin</creatorcontrib><creatorcontrib>Manske, Magnus</creatorcontrib><creatorcontrib>Machunter, Barbara</creatorcontrib><creatorcontrib>Kenangalem, Enny</creatorcontrib><creatorcontrib>Noviyanti, Rintis</creatorcontrib><creatorcontrib>Trianty, Leily</creatorcontrib><creatorcontrib>Sebayang, Boni</creatorcontrib><creatorcontrib>Wirjanata, Grennady</creatorcontrib><creatorcontrib>Sriprawat, Kanlaya</creatorcontrib><creatorcontrib>Alcock, Daniel</creatorcontrib><creatorcontrib>Macinnis, Bronwyn</creatorcontrib><creatorcontrib>Miotto, Olivo</creatorcontrib><creatorcontrib>Clark, Taane G</creatorcontrib><creatorcontrib>Russell, Bruce</creatorcontrib><creatorcontrib>Anstey, Nicholas M</creatorcontrib><creatorcontrib>Nosten, François</creatorcontrib><creatorcontrib>Kwiatkowski, Dominic P</creatorcontrib><creatorcontrib>Price, Ric N</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Auburn, Sarah</au><au>Marfurt, Jutta</au><au>Maslen, Gareth</au><au>Campino, Susana</au><au>Ruano Rubio, Valentin</au><au>Manske, Magnus</au><au>Machunter, Barbara</au><au>Kenangalem, Enny</au><au>Noviyanti, Rintis</au><au>Trianty, Leily</au><au>Sebayang, Boni</au><au>Wirjanata, Grennady</au><au>Sriprawat, Kanlaya</au><au>Alcock, Daniel</au><au>Macinnis, Bronwyn</au><au>Miotto, Olivo</au><au>Clark, Taane G</au><au>Russell, Bruce</au><au>Anstey, Nicholas M</au><au>Nosten, François</au><au>Kwiatkowski, Dominic P</au><au>Price, Ric N</au><au>Braga, Erika Martins</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effective preparation of Plasmodium vivax field isolates for high-throughput whole genome sequencing</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-01-04</date><risdate>2013</risdate><volume>8</volume><issue>1</issue><spage>e53160</spage><epage>e53160</epage><pages>e53160-e53160</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Whole genome sequencing (WGS) of Plasmodium vivax is problematic due to the reliance on clinical isolates which are generally low in parasitaemia and sample volume. Furthermore, clinical isolates contain a significant contaminating background of host DNA which confounds efforts to map short read sequence of the target P. vivax DNA. Here, we discuss a methodology to significantly improve the success of P. vivax WGS on natural (non-adapted) patient isolates. Using 37 patient isolates from Indonesia, Thailand, and travellers, we assessed the application of CF11-based white blood cell filtration alone and in combination with short term ex vivo schizont maturation. Although CF11 filtration reduced human DNA contamination in 8 Indonesian isolates tested, additional short-term culture increased the P. vivax DNA yield from a median of 0.15 to 6.2 ng µl(-1) packed red blood cells (pRBCs) (p = 0.001) and reduced the human DNA percentage from a median of 33.9% to 6.22% (p = 0.008). Furthermore, post-CF11 and culture samples from Thailand gave a median P. vivax DNA yield of 2.34 ng µl(-1) pRBCs, and 2.65% human DNA. In 22 P. vivax patient isolates prepared with the 2-step method, we demonstrate high depth (median 654X coverage) and breadth (≥89%) of coverage on the Illumina GAII and HiSeq platforms. In contrast to the A+T-rich P. falciparum genome, negligible bias was observed in coverage depth between coding and non-coding regions of the P. vivax genome. This uniform coverage will greatly facilitate the detection of SNPs and copy number variants across the genome, enabling unbiased exploration of the natural diversity in P. vivax populations.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23308154</pmid><doi>10.1371/journal.pone.0053160</doi><tpages>e53160</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2013-01, Vol.8 (1), p.e53160-e53160 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1289061113 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Analysis Bioinformatics Biology Blood Blood cells Cell culture Clinical isolates Clinical medicine Community development Contamination Copy number Councils Deoxyribonucleic acid DNA DNA sequencing DNA, Protozoan - genetics DNA, Protozoan - isolation & purification Erythrocytes Filtration Gene sequencing Genetic aspects Genetic testing Genome, Protozoan Genomes Genomics High-Throughput Nucleotide Sequencing - methods Humans Leukocytes Malaria Malaria, Vivax - diagnosis Malaria, Vivax - parasitology Medical research Medicine Molecular biology Nucleotide sequence Parasites Plasmodium Plasmodium falciparum Plasmodium vivax Plasmodium vivax - genetics Plasmodium vivax - isolation & purification Real-Time Polymerase Chain Reaction Red blood cells Single-nucleotide polymorphism Travellers Tropical diseases White blood cells |
title | Effective preparation of Plasmodium vivax field isolates for high-throughput whole genome sequencing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A45%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effective%20preparation%20of%20Plasmodium%20vivax%20field%20isolates%20for%20high-throughput%20whole%20genome%20sequencing&rft.jtitle=PloS%20one&rft.au=Auburn,%20Sarah&rft.date=2013-01-04&rft.volume=8&rft.issue=1&rft.spage=e53160&rft.epage=e53160&rft.pages=e53160-e53160&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0053160&rft_dat=%3Cgale_plos_%3EA478431619%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1289061113&rft_id=info:pmid/23308154&rft_galeid=A478431619&rft_doaj_id=oai_doaj_org_article_b2b44adb48a741479219665af047e369&rfr_iscdi=true |