RNAi targeting of West Nile virus in mosquito midguts promotes virus diversification

West Nile virus (WNV) exists in nature as a genetically diverse population of competing genomes. This high genetic diversity and concomitant adaptive plasticity has facilitated the rapid adaptation of WNV to North American transmission cycles and contributed to its explosive spread throughout the Ne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS pathogens 2009-07, Vol.5 (7), p.e1000502-e1000502
Hauptverfasser: Brackney, Doug E, Beane, Jennifer E, Ebel, Gregory D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1000502
container_issue 7
container_start_page e1000502
container_title PLoS pathogens
container_volume 5
creator Brackney, Doug E
Beane, Jennifer E
Ebel, Gregory D
description West Nile virus (WNV) exists in nature as a genetically diverse population of competing genomes. This high genetic diversity and concomitant adaptive plasticity has facilitated the rapid adaptation of WNV to North American transmission cycles and contributed to its explosive spread throughout the New World. WNV is maintained in nature in a transmission cycle between mosquitoes and birds, with intrahost genetic diversity highest in mosquitoes. The mechanistic basis for this increase in genetic diversity in mosquitoes is poorly understood. To determine whether the high mutational diversity of WNV in mosquitoes is driven by RNA interference (RNAi), we characterized the RNAi response to WNV in the midguts of orally exposed Culex pipiens quinquefasciatus using high-throughput, massively parallel sequencing and estimated viral genetic diversity. Our data demonstrate that WNV infection in orally exposed vector mosquitoes induces the RNAi pathway and that regions of the WNV genome that are more intensely targeted by RNAi are more likely to contain point mutations compared to weakly targeted regions. These results suggest that, under natural conditions, positive selection of WNV within mosquitoes is stronger in regions highly targeted by the host RNAi response. Further, they provide a mechanistic basis for the relative importance of mosquitoes in driving WNV diversification.
doi_str_mv 10.1371/journal.ppat.1000502
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1289056729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A206342146</galeid><doaj_id>oai_doaj_org_article_ef68bca9975d4495a4955b7187898703</doaj_id><sourcerecordid>A206342146</sourcerecordid><originalsourceid>FETCH-LOGICAL-c662t-af4846713ec4c510da5baf4436954b441cf30dd5581347b2673f346a8e858dca3</originalsourceid><addsrcrecordid>eNqVkl2L1DAUhoso7rr6D0QLguDFjEnzfSMMix8DywjripchTdKaoW26STrovzfjVN2CIBJCwsnzvoecc4riKQRriBh8vfdTGFS3HkeV1hAAQEB1rziHhKAVQwzfv3M_Kx7FuAcAQwTpw-IMCsI4Ruy8uLnebVyZVGhtckNb-qb8YmMqd66z5cGFKZZuKHsfbyeXfNk7004plmPwvU82zohxBxuia5xWyfnhcfGgUV20T-bzovj87u3N5YfV1cf328vN1UpTWqWVajDHlEFkNdYEAqNInWMYUUFwjTHUDQLGEMIhwqyuKEMNwlRxywk3WqGL4vnJd-x8lHNBooQVF4BQVolMbE-E8Wovx-B6Fb5Lr5z8GfChlSokpzsrbUN5rZUQjBiMBVF5k5pBzrjgDKDs9WbONtW9NdoOKahuYbp8GdxX2fqDrKjgEPNs8HI2CP52ylWWvYvadp0arJ-ipAzTirF_gxWgguKKZPDFCWxV_oEbGp8T6yMsNxlCuIKYZmr9FyovY3un_WCb3Oyl4NVCkJlkv6VWTTHK7afr_2B3SxafWB18jME2v4sHgTwO9a8eyuNQy3mos-zZ3cL_Ec1TjH4Ak4zyPA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20696425</pqid></control><display><type>article</type><title>RNAi targeting of West Nile virus in mosquito midguts promotes virus diversification</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><creator>Brackney, Doug E ; Beane, Jennifer E ; Ebel, Gregory D</creator><contributor>Holmes, Edward C.</contributor><creatorcontrib>Brackney, Doug E ; Beane, Jennifer E ; Ebel, Gregory D ; Holmes, Edward C.</creatorcontrib><description>West Nile virus (WNV) exists in nature as a genetically diverse population of competing genomes. This high genetic diversity and concomitant adaptive plasticity has facilitated the rapid adaptation of WNV to North American transmission cycles and contributed to its explosive spread throughout the New World. WNV is maintained in nature in a transmission cycle between mosquitoes and birds, with intrahost genetic diversity highest in mosquitoes. The mechanistic basis for this increase in genetic diversity in mosquitoes is poorly understood. To determine whether the high mutational diversity of WNV in mosquitoes is driven by RNA interference (RNAi), we characterized the RNAi response to WNV in the midguts of orally exposed Culex pipiens quinquefasciatus using high-throughput, massively parallel sequencing and estimated viral genetic diversity. Our data demonstrate that WNV infection in orally exposed vector mosquitoes induces the RNAi pathway and that regions of the WNV genome that are more intensely targeted by RNAi are more likely to contain point mutations compared to weakly targeted regions. These results suggest that, under natural conditions, positive selection of WNV within mosquitoes is stronger in regions highly targeted by the host RNAi response. Further, they provide a mechanistic basis for the relative importance of mosquitoes in driving WNV diversification.</description><identifier>ISSN: 1553-7374</identifier><identifier>ISSN: 1553-7366</identifier><identifier>EISSN: 1553-7374</identifier><identifier>DOI: 10.1371/journal.ppat.1000502</identifier><identifier>PMID: 19578437</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Biological diversity ; Causes of ; Culex - virology ; Culex pipiens quinquefasciatus ; Distribution ; Evolutionary Biology/Microbial Evolution and Genomics ; Gene Library ; Genetic aspects ; Genetic diversity ; Genetics and Genomics/Microbial Evolution and Genomics ; Genome, Viral ; Mosquitoes ; Mutation ; Nucleic Acid Conformation ; Physiological aspects ; Reverse Transcriptase Polymerase Chain Reaction ; RNA Interference ; RNA, Small Interfering - chemistry ; RNA, Small Interfering - genetics ; RNA, Small Interfering - metabolism ; RNA, Viral - chemistry ; RNA, Viral - genetics ; RNA, Viral - metabolism ; Sequence Analysis, RNA ; Virology/Emerging Viral Diseases ; Virology/Host Antiviral Responses ; Virology/Virus Evolution and Symbiosis ; West Nile fever ; West Nile virus ; West Nile virus - genetics</subject><ispartof>PLoS pathogens, 2009-07, Vol.5 (7), p.e1000502-e1000502</ispartof><rights>COPYRIGHT 2009 Public Library of Science</rights><rights>Brackney et al. 2009</rights><rights>2009 Brackney et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Brackney DE, Beane JE, Ebel GD (2009) RNAi Targeting of West Nile Virus in Mosquito Midguts Promotes Virus Diversification. PLoS Pathog 5(7): e1000502. doi:10.1371/journal.ppat.1000502</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c662t-af4846713ec4c510da5baf4436954b441cf30dd5581347b2673f346a8e858dca3</citedby><cites>FETCH-LOGICAL-c662t-af4846713ec4c510da5baf4436954b441cf30dd5581347b2673f346a8e858dca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2698148/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2698148/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2106,2932,23875,27933,27934,53800,53802</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19578437$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Holmes, Edward C.</contributor><creatorcontrib>Brackney, Doug E</creatorcontrib><creatorcontrib>Beane, Jennifer E</creatorcontrib><creatorcontrib>Ebel, Gregory D</creatorcontrib><title>RNAi targeting of West Nile virus in mosquito midguts promotes virus diversification</title><title>PLoS pathogens</title><addtitle>PLoS Pathog</addtitle><description>West Nile virus (WNV) exists in nature as a genetically diverse population of competing genomes. This high genetic diversity and concomitant adaptive plasticity has facilitated the rapid adaptation of WNV to North American transmission cycles and contributed to its explosive spread throughout the New World. WNV is maintained in nature in a transmission cycle between mosquitoes and birds, with intrahost genetic diversity highest in mosquitoes. The mechanistic basis for this increase in genetic diversity in mosquitoes is poorly understood. To determine whether the high mutational diversity of WNV in mosquitoes is driven by RNA interference (RNAi), we characterized the RNAi response to WNV in the midguts of orally exposed Culex pipiens quinquefasciatus using high-throughput, massively parallel sequencing and estimated viral genetic diversity. Our data demonstrate that WNV infection in orally exposed vector mosquitoes induces the RNAi pathway and that regions of the WNV genome that are more intensely targeted by RNAi are more likely to contain point mutations compared to weakly targeted regions. These results suggest that, under natural conditions, positive selection of WNV within mosquitoes is stronger in regions highly targeted by the host RNAi response. Further, they provide a mechanistic basis for the relative importance of mosquitoes in driving WNV diversification.</description><subject>Animals</subject><subject>Biological diversity</subject><subject>Causes of</subject><subject>Culex - virology</subject><subject>Culex pipiens quinquefasciatus</subject><subject>Distribution</subject><subject>Evolutionary Biology/Microbial Evolution and Genomics</subject><subject>Gene Library</subject><subject>Genetic aspects</subject><subject>Genetic diversity</subject><subject>Genetics and Genomics/Microbial Evolution and Genomics</subject><subject>Genome, Viral</subject><subject>Mosquitoes</subject><subject>Mutation</subject><subject>Nucleic Acid Conformation</subject><subject>Physiological aspects</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>RNA Interference</subject><subject>RNA, Small Interfering - chemistry</subject><subject>RNA, Small Interfering - genetics</subject><subject>RNA, Small Interfering - metabolism</subject><subject>RNA, Viral - chemistry</subject><subject>RNA, Viral - genetics</subject><subject>RNA, Viral - metabolism</subject><subject>Sequence Analysis, RNA</subject><subject>Virology/Emerging Viral Diseases</subject><subject>Virology/Host Antiviral Responses</subject><subject>Virology/Virus Evolution and Symbiosis</subject><subject>West Nile fever</subject><subject>West Nile virus</subject><subject>West Nile virus - genetics</subject><issn>1553-7374</issn><issn>1553-7366</issn><issn>1553-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVkl2L1DAUhoso7rr6D0QLguDFjEnzfSMMix8DywjripchTdKaoW26STrovzfjVN2CIBJCwsnzvoecc4riKQRriBh8vfdTGFS3HkeV1hAAQEB1rziHhKAVQwzfv3M_Kx7FuAcAQwTpw-IMCsI4Ruy8uLnebVyZVGhtckNb-qb8YmMqd66z5cGFKZZuKHsfbyeXfNk7004plmPwvU82zohxBxuia5xWyfnhcfGgUV20T-bzovj87u3N5YfV1cf328vN1UpTWqWVajDHlEFkNdYEAqNInWMYUUFwjTHUDQLGEMIhwqyuKEMNwlRxywk3WqGL4vnJd-x8lHNBooQVF4BQVolMbE-E8Wovx-B6Fb5Lr5z8GfChlSokpzsrbUN5rZUQjBiMBVF5k5pBzrjgDKDs9WbONtW9NdoOKahuYbp8GdxX2fqDrKjgEPNs8HI2CP52ylWWvYvadp0arJ-ipAzTirF_gxWgguKKZPDFCWxV_oEbGp8T6yMsNxlCuIKYZmr9FyovY3un_WCb3Oyl4NVCkJlkv6VWTTHK7afr_2B3SxafWB18jME2v4sHgTwO9a8eyuNQy3mos-zZ3cL_Ec1TjH4Ak4zyPA</recordid><startdate>20090701</startdate><enddate>20090701</enddate><creator>Brackney, Doug E</creator><creator>Beane, Jennifer E</creator><creator>Ebel, Gregory D</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7SS</scope><scope>7TM</scope><scope>7U9</scope><scope>F1W</scope><scope>H94</scope><scope>H95</scope><scope>L.G</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20090701</creationdate><title>RNAi targeting of West Nile virus in mosquito midguts promotes virus diversification</title><author>Brackney, Doug E ; Beane, Jennifer E ; Ebel, Gregory D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c662t-af4846713ec4c510da5baf4436954b441cf30dd5581347b2673f346a8e858dca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Biological diversity</topic><topic>Causes of</topic><topic>Culex - virology</topic><topic>Culex pipiens quinquefasciatus</topic><topic>Distribution</topic><topic>Evolutionary Biology/Microbial Evolution and Genomics</topic><topic>Gene Library</topic><topic>Genetic aspects</topic><topic>Genetic diversity</topic><topic>Genetics and Genomics/Microbial Evolution and Genomics</topic><topic>Genome, Viral</topic><topic>Mosquitoes</topic><topic>Mutation</topic><topic>Nucleic Acid Conformation</topic><topic>Physiological aspects</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>RNA Interference</topic><topic>RNA, Small Interfering - chemistry</topic><topic>RNA, Small Interfering - genetics</topic><topic>RNA, Small Interfering - metabolism</topic><topic>RNA, Viral - chemistry</topic><topic>RNA, Viral - genetics</topic><topic>RNA, Viral - metabolism</topic><topic>Sequence Analysis, RNA</topic><topic>Virology/Emerging Viral Diseases</topic><topic>Virology/Host Antiviral Responses</topic><topic>Virology/Virus Evolution and Symbiosis</topic><topic>West Nile fever</topic><topic>West Nile virus</topic><topic>West Nile virus - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brackney, Doug E</creatorcontrib><creatorcontrib>Beane, Jennifer E</creatorcontrib><creatorcontrib>Ebel, Gregory D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS pathogens</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brackney, Doug E</au><au>Beane, Jennifer E</au><au>Ebel, Gregory D</au><au>Holmes, Edward C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RNAi targeting of West Nile virus in mosquito midguts promotes virus diversification</atitle><jtitle>PLoS pathogens</jtitle><addtitle>PLoS Pathog</addtitle><date>2009-07-01</date><risdate>2009</risdate><volume>5</volume><issue>7</issue><spage>e1000502</spage><epage>e1000502</epage><pages>e1000502-e1000502</pages><issn>1553-7374</issn><issn>1553-7366</issn><eissn>1553-7374</eissn><abstract>West Nile virus (WNV) exists in nature as a genetically diverse population of competing genomes. This high genetic diversity and concomitant adaptive plasticity has facilitated the rapid adaptation of WNV to North American transmission cycles and contributed to its explosive spread throughout the New World. WNV is maintained in nature in a transmission cycle between mosquitoes and birds, with intrahost genetic diversity highest in mosquitoes. The mechanistic basis for this increase in genetic diversity in mosquitoes is poorly understood. To determine whether the high mutational diversity of WNV in mosquitoes is driven by RNA interference (RNAi), we characterized the RNAi response to WNV in the midguts of orally exposed Culex pipiens quinquefasciatus using high-throughput, massively parallel sequencing and estimated viral genetic diversity. Our data demonstrate that WNV infection in orally exposed vector mosquitoes induces the RNAi pathway and that regions of the WNV genome that are more intensely targeted by RNAi are more likely to contain point mutations compared to weakly targeted regions. These results suggest that, under natural conditions, positive selection of WNV within mosquitoes is stronger in regions highly targeted by the host RNAi response. Further, they provide a mechanistic basis for the relative importance of mosquitoes in driving WNV diversification.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>19578437</pmid><doi>10.1371/journal.ppat.1000502</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7374
ispartof PLoS pathogens, 2009-07, Vol.5 (7), p.e1000502-e1000502
issn 1553-7374
1553-7366
1553-7374
language eng
recordid cdi_plos_journals_1289056729
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; Public Library of Science (PLoS) Journals Open Access; PubMed Central
subjects Animals
Biological diversity
Causes of
Culex - virology
Culex pipiens quinquefasciatus
Distribution
Evolutionary Biology/Microbial Evolution and Genomics
Gene Library
Genetic aspects
Genetic diversity
Genetics and Genomics/Microbial Evolution and Genomics
Genome, Viral
Mosquitoes
Mutation
Nucleic Acid Conformation
Physiological aspects
Reverse Transcriptase Polymerase Chain Reaction
RNA Interference
RNA, Small Interfering - chemistry
RNA, Small Interfering - genetics
RNA, Small Interfering - metabolism
RNA, Viral - chemistry
RNA, Viral - genetics
RNA, Viral - metabolism
Sequence Analysis, RNA
Virology/Emerging Viral Diseases
Virology/Host Antiviral Responses
Virology/Virus Evolution and Symbiosis
West Nile fever
West Nile virus
West Nile virus - genetics
title RNAi targeting of West Nile virus in mosquito midguts promotes virus diversification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T02%3A16%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RNAi%20targeting%20of%20West%20Nile%20virus%20in%20mosquito%20midguts%20promotes%20virus%20diversification&rft.jtitle=PLoS%20pathogens&rft.au=Brackney,%20Doug%20E&rft.date=2009-07-01&rft.volume=5&rft.issue=7&rft.spage=e1000502&rft.epage=e1000502&rft.pages=e1000502-e1000502&rft.issn=1553-7374&rft.eissn=1553-7374&rft_id=info:doi/10.1371/journal.ppat.1000502&rft_dat=%3Cgale_plos_%3EA206342146%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20696425&rft_id=info:pmid/19578437&rft_galeid=A206342146&rft_doaj_id=oai_doaj_org_article_ef68bca9975d4495a4955b7187898703&rfr_iscdi=true