High-resolution analysis and functional mapping of cleavage sites and substrate proteins of furin in the human proteome

There is a growing appreciation of the role of proteolytic processes in human health and disease, but tools for analysis of such processes on a proteome-wide scale are limited. Furin is a ubiquitous proprotein convertase that cleaves after basic residues and transforms secretory proproteins into bio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2013-01, Vol.8 (1), p.e54290-e54290
Hauptverfasser: Shiryaev, Sergey A, Chernov, Andrei V, Golubkov, Vladislav S, Thomsen, Elliot R, Chudin, Eugene, Chee, Mark S, Kozlov, Igor A, Strongin, Alex Y, Cieplak, Piotr
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e54290
container_issue 1
container_start_page e54290
container_title PloS one
container_volume 8
creator Shiryaev, Sergey A
Chernov, Andrei V
Golubkov, Vladislav S
Thomsen, Elliot R
Chudin, Eugene
Chee, Mark S
Kozlov, Igor A
Strongin, Alex Y
Cieplak, Piotr
description There is a growing appreciation of the role of proteolytic processes in human health and disease, but tools for analysis of such processes on a proteome-wide scale are limited. Furin is a ubiquitous proprotein convertase that cleaves after basic residues and transforms secretory proproteins into biologically active proteins. Despite this important role, many furin substrates remain unknown in the human proteome. We devised an approach for proteinase target identification that combines an in silico discovery pipeline with highly multiplexed proteinase activity assays. We performed in silico analysis of the human proteome and identified over 1,050 secretory proteins as potential furin substrates. We then used a multiplexed protease assay to validate these tentative targets. The assay was carried out on over 3,260 overlapping peptides designed to represent P7-P1' and P4-P4' positions of furin cleavage sites in the candidate proteins. The obtained results greatly increased our knowledge of the unique cleavage preferences of furin, revealed the importance of both short-range (P4-P1) and long-range (P7-P6) interactions in defining furin cleavage specificity, demonstrated that the R-X-R/K/X-R ↓ motif alone is insufficient for predicting furin proteolysis of the substrate, and identified ≈ 490 potential protein substrates of furin in the human proteome. The assignment of these substrates to cellular pathways suggests an important role of furin in development, including axonal guidance, cardiogenesis, and maintenance of stem cell pluripotency. The novel approach proposed in this study can be readily applied to other proteinases.
doi_str_mv 10.1371/journal.pone.0054290
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1289054415</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478270135</galeid><doaj_id>oai_doaj_org_article_7b1d91af66f44fd980f1353c226f6f79</doaj_id><sourcerecordid>A478270135</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-73c750ec5073e12cb793f12877de1bd2f58baefd7f8659087888ac3774915c4a3</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7jr6D0QLgujFjE3SNs2NsCzqDiws-HUb0vSkzdIms0m6uv_e1OksU9kLaaHh5DnvyXmbkyQvUbZBhKIP13Z0RvSbnTWwybIixyx7lJwiRvC6xBl5fLQ-SZ55fx0hUpXl0-QEE0IKxuhp8utCt93agbf9GLQ1qYiad177uGhSNRo5RUWfDmK306ZNrUplD-JWtJB6HWAP-rH2wYkA6c7ZANr4CVSj0yaNb-gg7cZBmP22HeB58kSJ3sOL-btKfnz-9P38Yn159WV7fna5liXDYU2JpEUGssgoAYRlTRlRCFeUNoDqBquiqgWohqqqLFhW0aqqhCSU5gwVMhdklbze6-566_nsmedRgkXLclREYrsnGiuu-c7pQbg7boXmfwPWtVy4oGPTnNaoYUioslR5rhpWZQqRgkiMS1WqeLRV8nGuNtYDNBJMNKVfiC53jO54a285KfKCYRoF3s0Czt6M4AMftJfQ98KAHadz09gcYvlU680_6MPdzVQrYgPaKBvrykmUn-W0wjSbOlglmweo-DQwaBkvmNIxvkh4v0iITIDfoRWj93z77ev_s1c_l-zbI7YD0YfucDX9Esz3oHTWewfq3mSU8Wk-Dm7waT74PB8x7dXxD7pPOgwE-QN-cAvQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1289054415</pqid></control><display><type>article</type><title>High-resolution analysis and functional mapping of cleavage sites and substrate proteins of furin in the human proteome</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Shiryaev, Sergey A ; Chernov, Andrei V ; Golubkov, Vladislav S ; Thomsen, Elliot R ; Chudin, Eugene ; Chee, Mark S ; Kozlov, Igor A ; Strongin, Alex Y ; Cieplak, Piotr</creator><creatorcontrib>Shiryaev, Sergey A ; Chernov, Andrei V ; Golubkov, Vladislav S ; Thomsen, Elliot R ; Chudin, Eugene ; Chee, Mark S ; Kozlov, Igor A ; Strongin, Alex Y ; Cieplak, Piotr</creatorcontrib><description>There is a growing appreciation of the role of proteolytic processes in human health and disease, but tools for analysis of such processes on a proteome-wide scale are limited. Furin is a ubiquitous proprotein convertase that cleaves after basic residues and transforms secretory proproteins into biologically active proteins. Despite this important role, many furin substrates remain unknown in the human proteome. We devised an approach for proteinase target identification that combines an in silico discovery pipeline with highly multiplexed proteinase activity assays. We performed in silico analysis of the human proteome and identified over 1,050 secretory proteins as potential furin substrates. We then used a multiplexed protease assay to validate these tentative targets. The assay was carried out on over 3,260 overlapping peptides designed to represent P7-P1' and P4-P4' positions of furin cleavage sites in the candidate proteins. The obtained results greatly increased our knowledge of the unique cleavage preferences of furin, revealed the importance of both short-range (P4-P1) and long-range (P7-P6) interactions in defining furin cleavage specificity, demonstrated that the R-X-R/K/X-R ↓ motif alone is insufficient for predicting furin proteolysis of the substrate, and identified ≈ 490 potential protein substrates of furin in the human proteome. The assignment of these substrates to cellular pathways suggests an important role of furin in development, including axonal guidance, cardiogenesis, and maintenance of stem cell pluripotency. The novel approach proposed in this study can be readily applied to other proteinases.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0054290</identifier><identifier>PMID: 23335997</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Amino Acid Motifs ; Amino Acid Sequence ; Analysis ; Assaying ; Axon guidance ; Axonogenesis ; Basic converters ; Biological activity ; Biology ; Cleavage ; Databases, Protein ; Enzymes ; Furin ; Furin - chemistry ; Furin - metabolism ; Genomes ; Humans ; Identification ; Infectious diseases ; Inflammatory diseases ; Medical research ; Models, Molecular ; Multiplexing ; Peptide mapping ; Peptides ; Pluripotency ; Proprotein convertases ; Proteases ; Protein Interaction Domains and Motifs ; Protein Interaction Mapping ; Protein Interaction Maps ; Protein Structure, Secondary ; Proteinase ; Proteins ; Proteolysis ; Proteome - metabolism ; Proteomes ; Reproducibility of Results ; Stem cells ; Substrate Specificity ; Substrates ; Target recognition ; West Nile virus</subject><ispartof>PloS one, 2013-01, Vol.8 (1), p.e54290-e54290</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Shiryaev et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Shiryaev et al 2013 Shiryaev et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-73c750ec5073e12cb793f12877de1bd2f58baefd7f8659087888ac3774915c4a3</citedby><cites>FETCH-LOGICAL-c692t-73c750ec5073e12cb793f12877de1bd2f58baefd7f8659087888ac3774915c4a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3545927/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3545927/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23335997$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shiryaev, Sergey A</creatorcontrib><creatorcontrib>Chernov, Andrei V</creatorcontrib><creatorcontrib>Golubkov, Vladislav S</creatorcontrib><creatorcontrib>Thomsen, Elliot R</creatorcontrib><creatorcontrib>Chudin, Eugene</creatorcontrib><creatorcontrib>Chee, Mark S</creatorcontrib><creatorcontrib>Kozlov, Igor A</creatorcontrib><creatorcontrib>Strongin, Alex Y</creatorcontrib><creatorcontrib>Cieplak, Piotr</creatorcontrib><title>High-resolution analysis and functional mapping of cleavage sites and substrate proteins of furin in the human proteome</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>There is a growing appreciation of the role of proteolytic processes in human health and disease, but tools for analysis of such processes on a proteome-wide scale are limited. Furin is a ubiquitous proprotein convertase that cleaves after basic residues and transforms secretory proproteins into biologically active proteins. Despite this important role, many furin substrates remain unknown in the human proteome. We devised an approach for proteinase target identification that combines an in silico discovery pipeline with highly multiplexed proteinase activity assays. We performed in silico analysis of the human proteome and identified over 1,050 secretory proteins as potential furin substrates. We then used a multiplexed protease assay to validate these tentative targets. The assay was carried out on over 3,260 overlapping peptides designed to represent P7-P1' and P4-P4' positions of furin cleavage sites in the candidate proteins. The obtained results greatly increased our knowledge of the unique cleavage preferences of furin, revealed the importance of both short-range (P4-P1) and long-range (P7-P6) interactions in defining furin cleavage specificity, demonstrated that the R-X-R/K/X-R ↓ motif alone is insufficient for predicting furin proteolysis of the substrate, and identified ≈ 490 potential protein substrates of furin in the human proteome. The assignment of these substrates to cellular pathways suggests an important role of furin in development, including axonal guidance, cardiogenesis, and maintenance of stem cell pluripotency. The novel approach proposed in this study can be readily applied to other proteinases.</description><subject>Amino Acid Motifs</subject><subject>Amino Acid Sequence</subject><subject>Analysis</subject><subject>Assaying</subject><subject>Axon guidance</subject><subject>Axonogenesis</subject><subject>Basic converters</subject><subject>Biological activity</subject><subject>Biology</subject><subject>Cleavage</subject><subject>Databases, Protein</subject><subject>Enzymes</subject><subject>Furin</subject><subject>Furin - chemistry</subject><subject>Furin - metabolism</subject><subject>Genomes</subject><subject>Humans</subject><subject>Identification</subject><subject>Infectious diseases</subject><subject>Inflammatory diseases</subject><subject>Medical research</subject><subject>Models, Molecular</subject><subject>Multiplexing</subject><subject>Peptide mapping</subject><subject>Peptides</subject><subject>Pluripotency</subject><subject>Proprotein convertases</subject><subject>Proteases</subject><subject>Protein Interaction Domains and Motifs</subject><subject>Protein Interaction Mapping</subject><subject>Protein Interaction Maps</subject><subject>Protein Structure, Secondary</subject><subject>Proteinase</subject><subject>Proteins</subject><subject>Proteolysis</subject><subject>Proteome - metabolism</subject><subject>Proteomes</subject><subject>Reproducibility of Results</subject><subject>Stem cells</subject><subject>Substrate Specificity</subject><subject>Substrates</subject><subject>Target recognition</subject><subject>West Nile virus</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7jr6D0QLgujFjE3SNs2NsCzqDiws-HUb0vSkzdIms0m6uv_e1OksU9kLaaHh5DnvyXmbkyQvUbZBhKIP13Z0RvSbnTWwybIixyx7lJwiRvC6xBl5fLQ-SZ55fx0hUpXl0-QEE0IKxuhp8utCt93agbf9GLQ1qYiad177uGhSNRo5RUWfDmK306ZNrUplD-JWtJB6HWAP-rH2wYkA6c7ZANr4CVSj0yaNb-gg7cZBmP22HeB58kSJ3sOL-btKfnz-9P38Yn159WV7fna5liXDYU2JpEUGssgoAYRlTRlRCFeUNoDqBquiqgWohqqqLFhW0aqqhCSU5gwVMhdklbze6-566_nsmedRgkXLclREYrsnGiuu-c7pQbg7boXmfwPWtVy4oGPTnNaoYUioslR5rhpWZQqRgkiMS1WqeLRV8nGuNtYDNBJMNKVfiC53jO54a285KfKCYRoF3s0Czt6M4AMftJfQ98KAHadz09gcYvlU680_6MPdzVQrYgPaKBvrykmUn-W0wjSbOlglmweo-DQwaBkvmNIxvkh4v0iITIDfoRWj93z77ev_s1c_l-zbI7YD0YfucDX9Esz3oHTWewfq3mSU8Wk-Dm7waT74PB8x7dXxD7pPOgwE-QN-cAvQ</recordid><startdate>20130115</startdate><enddate>20130115</enddate><creator>Shiryaev, Sergey A</creator><creator>Chernov, Andrei V</creator><creator>Golubkov, Vladislav S</creator><creator>Thomsen, Elliot R</creator><creator>Chudin, Eugene</creator><creator>Chee, Mark S</creator><creator>Kozlov, Igor A</creator><creator>Strongin, Alex Y</creator><creator>Cieplak, Piotr</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20130115</creationdate><title>High-resolution analysis and functional mapping of cleavage sites and substrate proteins of furin in the human proteome</title><author>Shiryaev, Sergey A ; Chernov, Andrei V ; Golubkov, Vladislav S ; Thomsen, Elliot R ; Chudin, Eugene ; Chee, Mark S ; Kozlov, Igor A ; Strongin, Alex Y ; Cieplak, Piotr</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-73c750ec5073e12cb793f12877de1bd2f58baefd7f8659087888ac3774915c4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Amino Acid Motifs</topic><topic>Amino Acid Sequence</topic><topic>Analysis</topic><topic>Assaying</topic><topic>Axon guidance</topic><topic>Axonogenesis</topic><topic>Basic converters</topic><topic>Biological activity</topic><topic>Biology</topic><topic>Cleavage</topic><topic>Databases, Protein</topic><topic>Enzymes</topic><topic>Furin</topic><topic>Furin - chemistry</topic><topic>Furin - metabolism</topic><topic>Genomes</topic><topic>Humans</topic><topic>Identification</topic><topic>Infectious diseases</topic><topic>Inflammatory diseases</topic><topic>Medical research</topic><topic>Models, Molecular</topic><topic>Multiplexing</topic><topic>Peptide mapping</topic><topic>Peptides</topic><topic>Pluripotency</topic><topic>Proprotein convertases</topic><topic>Proteases</topic><topic>Protein Interaction Domains and Motifs</topic><topic>Protein Interaction Mapping</topic><topic>Protein Interaction Maps</topic><topic>Protein Structure, Secondary</topic><topic>Proteinase</topic><topic>Proteins</topic><topic>Proteolysis</topic><topic>Proteome - metabolism</topic><topic>Proteomes</topic><topic>Reproducibility of Results</topic><topic>Stem cells</topic><topic>Substrate Specificity</topic><topic>Substrates</topic><topic>Target recognition</topic><topic>West Nile virus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shiryaev, Sergey A</creatorcontrib><creatorcontrib>Chernov, Andrei V</creatorcontrib><creatorcontrib>Golubkov, Vladislav S</creatorcontrib><creatorcontrib>Thomsen, Elliot R</creatorcontrib><creatorcontrib>Chudin, Eugene</creatorcontrib><creatorcontrib>Chee, Mark S</creatorcontrib><creatorcontrib>Kozlov, Igor A</creatorcontrib><creatorcontrib>Strongin, Alex Y</creatorcontrib><creatorcontrib>Cieplak, Piotr</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shiryaev, Sergey A</au><au>Chernov, Andrei V</au><au>Golubkov, Vladislav S</au><au>Thomsen, Elliot R</au><au>Chudin, Eugene</au><au>Chee, Mark S</au><au>Kozlov, Igor A</au><au>Strongin, Alex Y</au><au>Cieplak, Piotr</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-resolution analysis and functional mapping of cleavage sites and substrate proteins of furin in the human proteome</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-01-15</date><risdate>2013</risdate><volume>8</volume><issue>1</issue><spage>e54290</spage><epage>e54290</epage><pages>e54290-e54290</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>There is a growing appreciation of the role of proteolytic processes in human health and disease, but tools for analysis of such processes on a proteome-wide scale are limited. Furin is a ubiquitous proprotein convertase that cleaves after basic residues and transforms secretory proproteins into biologically active proteins. Despite this important role, many furin substrates remain unknown in the human proteome. We devised an approach for proteinase target identification that combines an in silico discovery pipeline with highly multiplexed proteinase activity assays. We performed in silico analysis of the human proteome and identified over 1,050 secretory proteins as potential furin substrates. We then used a multiplexed protease assay to validate these tentative targets. The assay was carried out on over 3,260 overlapping peptides designed to represent P7-P1' and P4-P4' positions of furin cleavage sites in the candidate proteins. The obtained results greatly increased our knowledge of the unique cleavage preferences of furin, revealed the importance of both short-range (P4-P1) and long-range (P7-P6) interactions in defining furin cleavage specificity, demonstrated that the R-X-R/K/X-R ↓ motif alone is insufficient for predicting furin proteolysis of the substrate, and identified ≈ 490 potential protein substrates of furin in the human proteome. The assignment of these substrates to cellular pathways suggests an important role of furin in development, including axonal guidance, cardiogenesis, and maintenance of stem cell pluripotency. The novel approach proposed in this study can be readily applied to other proteinases.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23335997</pmid><doi>10.1371/journal.pone.0054290</doi><tpages>e54290</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2013-01, Vol.8 (1), p.e54290-e54290
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1289054415
source Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Amino Acid Motifs
Amino Acid Sequence
Analysis
Assaying
Axon guidance
Axonogenesis
Basic converters
Biological activity
Biology
Cleavage
Databases, Protein
Enzymes
Furin
Furin - chemistry
Furin - metabolism
Genomes
Humans
Identification
Infectious diseases
Inflammatory diseases
Medical research
Models, Molecular
Multiplexing
Peptide mapping
Peptides
Pluripotency
Proprotein convertases
Proteases
Protein Interaction Domains and Motifs
Protein Interaction Mapping
Protein Interaction Maps
Protein Structure, Secondary
Proteinase
Proteins
Proteolysis
Proteome - metabolism
Proteomes
Reproducibility of Results
Stem cells
Substrate Specificity
Substrates
Target recognition
West Nile virus
title High-resolution analysis and functional mapping of cleavage sites and substrate proteins of furin in the human proteome
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T23%3A32%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-resolution%20analysis%20and%20functional%20mapping%20of%20cleavage%20sites%20and%20substrate%20proteins%20of%20furin%20in%20the%20human%20proteome&rft.jtitle=PloS%20one&rft.au=Shiryaev,%20Sergey%20A&rft.date=2013-01-15&rft.volume=8&rft.issue=1&rft.spage=e54290&rft.epage=e54290&rft.pages=e54290-e54290&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0054290&rft_dat=%3Cgale_plos_%3EA478270135%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1289054415&rft_id=info:pmid/23335997&rft_galeid=A478270135&rft_doaj_id=oai_doaj_org_article_7b1d91af66f44fd980f1353c226f6f79&rfr_iscdi=true