Why most published research findings are false

There is increasing concern that most current published research findings are false. The probability that a research claim is true may depend on study power and bias, the number of other studies on the same question, and, importantly, the ratio of true to no relationships among the relationships pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS medicine 2005-08, Vol.2 (8), p.e124-e124
1. Verfasser: Ioannidis, John P A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e124
container_issue 8
container_start_page e124
container_title PLoS medicine
container_volume 2
creator Ioannidis, John P A
description There is increasing concern that most current published research findings are false. The probability that a research claim is true may depend on study power and bias, the number of other studies on the same question, and, importantly, the ratio of true to no relationships among the relationships probed in each scientific field. In this framework, a research finding is less likely to be true when the studies conducted in a field are smaller; when effect sizes are smaller; when there is a greater number and lesser preselection of tested relationships; where there is greater flexibility in designs, definitions, outcomes, and analytical modes; when there is greater financial and other interest and prejudice; and when more teams are involved in a scientific field in chase of statistical significance. Simulations show that for most study designs and settings, it is more likely for a research claim to be false than true. Moreover, for many current scientific fields, claimed research findings may often be simply accurate measures of the prevailing bias. In this essay, I discuss the implications of these problems for the conduct and interpretation of research.
doi_str_mv 10.1371/journal.pmed.0020124
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1288067959</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_52d69fba56f94a93972d38c6da6554c6</doaj_id><sourcerecordid>2893107111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c711t-5586a2235be8014e9b57e0e9995d8bc82a95523d17c756e692a191005365dcb43</originalsourceid><addsrcrecordid>eNptkV9rFDEUxYMotla_geiA0Lddc5O5-fMiSLFaKPii-BgyyZ3dWWYnazJT6Ld32h21FZ9uSH7nJCeHsdfA1yA1vN-lKQ--Xx_2FNecCw6ifsJOAWu7AqXV0wfrE_ailN0MWW75c3YCiiuuhThl6x_b22qfylgdpqbvypZilamQz2Fbtd0Qu2FTKp-pan1f6CV7dj9fLfOMfb_89O3iy-r66-eri4_Xq6ABxhWiUV4IiQ0ZDjXZBjVxstZiNE0wwltEISPooFGRssKDBc5RKoyhqeUZe3v0PfSpuCVqcSCM4UpbtDNxdSRi8jt3yN3e51uXfOfuN1LeOJ_HLvTkUERl28ajam3trbRaRGmCil4h1kHNXh-W26Zm_s1Aw5h9_8j08cnQbd0m3TgAI6TQs8H5YpDTz4nK6PZdCdT3fqA0FacMgqkFzuC7f8D_Z6uPVMiplEztn6cAd3fl_1a5u_LdUv4se_Mwxl_R0rb8BcmgqvU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1288067959</pqid></control><display><type>article</type><title>Why most published research findings are false</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>Ioannidis, John P A</creator><creatorcontrib>Ioannidis, John P A</creatorcontrib><description>There is increasing concern that most current published research findings are false. The probability that a research claim is true may depend on study power and bias, the number of other studies on the same question, and, importantly, the ratio of true to no relationships among the relationships probed in each scientific field. In this framework, a research finding is less likely to be true when the studies conducted in a field are smaller; when effect sizes are smaller; when there is a greater number and lesser preselection of tested relationships; where there is greater flexibility in designs, definitions, outcomes, and analytical modes; when there is greater financial and other interest and prejudice; and when more teams are involved in a scientific field in chase of statistical significance. Simulations show that for most study designs and settings, it is more likely for a research claim to be false than true. Moreover, for many current scientific fields, claimed research findings may often be simply accurate measures of the prevailing bias. In this essay, I discuss the implications of these problems for the conduct and interpretation of research.</description><identifier>ISSN: 1549-1676</identifier><identifier>ISSN: 1549-1277</identifier><identifier>EISSN: 1549-1676</identifier><identifier>DOI: 10.1371/journal.pmed.0020124</identifier><identifier>PMID: 16060722</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Bias ; Communication in Health Care ; Data Interpretation, Statistical ; Epidemiology/Public Health ; Expected values ; General Medicine ; Genetics/Genomics/Gene Therapy ; Hypotheses ; Likelihood Functions ; Medical journals ; Meta-Analysis as Topic ; Odds Ratio ; Other ; Probability ; Publishing ; Reproducibility of Results ; Research Design ; Sample Size ; Science Policy ; Statistical significance ; Statistics</subject><ispartof>PLoS medicine, 2005-08, Vol.2 (8), p.e124-e124</ispartof><rights>2005 John P. A. Ioannidis. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Citation: Ioannidis JPA (2005) Why Most Published Research Findings Are False. PLoS Med 2(8): e124. doi:10.1371/journal.pmed.0020124</rights><rights>Copyright: © 2005 John P. A. Ioannidis. 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c711t-5586a2235be8014e9b57e0e9995d8bc82a95523d17c756e692a191005365dcb43</citedby><cites>FETCH-LOGICAL-c711t-5586a2235be8014e9b57e0e9995d8bc82a95523d17c756e692a191005365dcb43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1182327/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1182327/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16060722$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ioannidis, John P A</creatorcontrib><title>Why most published research findings are false</title><title>PLoS medicine</title><addtitle>PLoS Med</addtitle><description>There is increasing concern that most current published research findings are false. The probability that a research claim is true may depend on study power and bias, the number of other studies on the same question, and, importantly, the ratio of true to no relationships among the relationships probed in each scientific field. In this framework, a research finding is less likely to be true when the studies conducted in a field are smaller; when effect sizes are smaller; when there is a greater number and lesser preselection of tested relationships; where there is greater flexibility in designs, definitions, outcomes, and analytical modes; when there is greater financial and other interest and prejudice; and when more teams are involved in a scientific field in chase of statistical significance. Simulations show that for most study designs and settings, it is more likely for a research claim to be false than true. Moreover, for many current scientific fields, claimed research findings may often be simply accurate measures of the prevailing bias. In this essay, I discuss the implications of these problems for the conduct and interpretation of research.</description><subject>Bias</subject><subject>Communication in Health Care</subject><subject>Data Interpretation, Statistical</subject><subject>Epidemiology/Public Health</subject><subject>Expected values</subject><subject>General Medicine</subject><subject>Genetics/Genomics/Gene Therapy</subject><subject>Hypotheses</subject><subject>Likelihood Functions</subject><subject>Medical journals</subject><subject>Meta-Analysis as Topic</subject><subject>Odds Ratio</subject><subject>Other</subject><subject>Probability</subject><subject>Publishing</subject><subject>Reproducibility of Results</subject><subject>Research Design</subject><subject>Sample Size</subject><subject>Science Policy</subject><subject>Statistical significance</subject><subject>Statistics</subject><issn>1549-1676</issn><issn>1549-1277</issn><issn>1549-1676</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNptkV9rFDEUxYMotla_geiA0Lddc5O5-fMiSLFaKPii-BgyyZ3dWWYnazJT6Ld32h21FZ9uSH7nJCeHsdfA1yA1vN-lKQ--Xx_2FNecCw6ifsJOAWu7AqXV0wfrE_ailN0MWW75c3YCiiuuhThl6x_b22qfylgdpqbvypZilamQz2Fbtd0Qu2FTKp-pan1f6CV7dj9fLfOMfb_89O3iy-r66-eri4_Xq6ABxhWiUV4IiQ0ZDjXZBjVxstZiNE0wwltEISPooFGRssKDBc5RKoyhqeUZe3v0PfSpuCVqcSCM4UpbtDNxdSRi8jt3yN3e51uXfOfuN1LeOJ_HLvTkUERl28ajam3trbRaRGmCil4h1kHNXh-W26Zm_s1Aw5h9_8j08cnQbd0m3TgAI6TQs8H5YpDTz4nK6PZdCdT3fqA0FacMgqkFzuC7f8D_Z6uPVMiplEztn6cAd3fl_1a5u_LdUv4se_Mwxl_R0rb8BcmgqvU</recordid><startdate>20050801</startdate><enddate>20050801</enddate><creator>Ioannidis, John P A</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><scope>CZK</scope></search><sort><creationdate>20050801</creationdate><title>Why most published research findings are false</title><author>Ioannidis, John P A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c711t-5586a2235be8014e9b57e0e9995d8bc82a95523d17c756e692a191005365dcb43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Bias</topic><topic>Communication in Health Care</topic><topic>Data Interpretation, Statistical</topic><topic>Epidemiology/Public Health</topic><topic>Expected values</topic><topic>General Medicine</topic><topic>Genetics/Genomics/Gene Therapy</topic><topic>Hypotheses</topic><topic>Likelihood Functions</topic><topic>Medical journals</topic><topic>Meta-Analysis as Topic</topic><topic>Odds Ratio</topic><topic>Other</topic><topic>Probability</topic><topic>Publishing</topic><topic>Reproducibility of Results</topic><topic>Research Design</topic><topic>Sample Size</topic><topic>Science Policy</topic><topic>Statistical significance</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ioannidis, John P A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>PLoS Medicine</collection><jtitle>PLoS medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ioannidis, John P A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Why most published research findings are false</atitle><jtitle>PLoS medicine</jtitle><addtitle>PLoS Med</addtitle><date>2005-08-01</date><risdate>2005</risdate><volume>2</volume><issue>8</issue><spage>e124</spage><epage>e124</epage><pages>e124-e124</pages><issn>1549-1676</issn><issn>1549-1277</issn><eissn>1549-1676</eissn><abstract>There is increasing concern that most current published research findings are false. The probability that a research claim is true may depend on study power and bias, the number of other studies on the same question, and, importantly, the ratio of true to no relationships among the relationships probed in each scientific field. In this framework, a research finding is less likely to be true when the studies conducted in a field are smaller; when effect sizes are smaller; when there is a greater number and lesser preselection of tested relationships; where there is greater flexibility in designs, definitions, outcomes, and analytical modes; when there is greater financial and other interest and prejudice; and when more teams are involved in a scientific field in chase of statistical significance. Simulations show that for most study designs and settings, it is more likely for a research claim to be false than true. Moreover, for many current scientific fields, claimed research findings may often be simply accurate measures of the prevailing bias. In this essay, I discuss the implications of these problems for the conduct and interpretation of research.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>16060722</pmid><doi>10.1371/journal.pmed.0020124</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1549-1676
ispartof PLoS medicine, 2005-08, Vol.2 (8), p.e124-e124
issn 1549-1676
1549-1277
1549-1676
language eng
recordid cdi_plos_journals_1288067959
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Public Library of Science (PLoS)
subjects Bias
Communication in Health Care
Data Interpretation, Statistical
Epidemiology/Public Health
Expected values
General Medicine
Genetics/Genomics/Gene Therapy
Hypotheses
Likelihood Functions
Medical journals
Meta-Analysis as Topic
Odds Ratio
Other
Probability
Publishing
Reproducibility of Results
Research Design
Sample Size
Science Policy
Statistical significance
Statistics
title Why most published research findings are false
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T08%3A48%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Why%20most%20published%20research%20findings%20are%20false&rft.jtitle=PLoS%20medicine&rft.au=Ioannidis,%20John%20P%20A&rft.date=2005-08-01&rft.volume=2&rft.issue=8&rft.spage=e124&rft.epage=e124&rft.pages=e124-e124&rft.issn=1549-1676&rft.eissn=1549-1676&rft_id=info:doi/10.1371/journal.pmed.0020124&rft_dat=%3Cproquest_plos_%3E2893107111%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1288067959&rft_id=info:pmid/16060722&rft_doaj_id=oai_doaj_org_article_52d69fba56f94a93972d38c6da6554c6&rfr_iscdi=true