Invariants for dissipative nonlinear systems by using rescaling

A rescaling transformation of space and time is introduced in the study of nonlinear dissipative systems that are described by a second‐order differential equation with a friction term proportional to the velocity, β(t)v. The transformation is of the form (x,t)→(ξ,θ), where x=ξC(t)+α(t), dθ=d t/A 2(...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:J. Math. Phys. (N.Y.); (United States) 1985-01, Vol.26 (1), p.68-73
Hauptverfasser: Feix, Marc R., Lewis, H. Ralph
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 73
container_issue 1
container_start_page 68
container_title J. Math. Phys. (N.Y.); (United States)
container_volume 26
creator Feix, Marc R.
Lewis, H. Ralph
description A rescaling transformation of space and time is introduced in the study of nonlinear dissipative systems that are described by a second‐order differential equation with a friction term proportional to the velocity, β(t)v. The transformation is of the form (x,t)→(ξ,θ), where x=ξC(t)+α(t), dθ=d t/A 2(t). This rescaling is used to find each potential for which there exists an exact invariant quadratic in the velocity and to find the invariant. The invariants are found explicitly for a power‐law potential, γ(t)x m+1/(m+1), and an arbitrary coefficient of friction β(t). We show in an example how the rescaling transformation can be chosen to give an asymptotic solution of the equation in cases where the exact invariant does not exist. For certain parameters, the asymptotic solution is a self‐similar solution that is an attractor for all initial conditions. The technique of applying a rescaling transformation has been useful in other problems and may have additional practical applications.
doi_str_mv 10.1063/1.526750
format Article
fullrecord <record><control><sourceid>scitation_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_9274913</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jmp</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-20c63b581a15597b1114dd4cbcee42f80fdfa53a5c936f3525e910ac75aae2fa3</originalsourceid><addsrcrecordid>eNp90E1Lw0AQBuBFFKxV8CcE8aCH1P1MsieR4keh4EXPy2SzW1faTdiJhf77pkR6ETzNYR7eYV5CrhmdMVqIBzZTvCgVPSETRiudl4WqTsmEUs5zLqvqnFwgflPKWCXlhDwu4hZSgNhj5tuUNQExdNCHrctiG9chOkgZ7rB3G8zqXfaDIa6y5NDCsFxdkjMPa3RXv3NKPl-eP-Zv-fL9dTF_WuZWSN3nnNpC1KpiwJTSZc0Yk00jbW2dk9xX1DcelABltSi8UFw5zSjYUgE47kFMyc2Y22IfDNrQO_tl2xid7Y3SmirOB3Q3IptaxOS86VLYQNoZRs2hHcPM2M5Ab0faweETnyDagEeveSk1EwO7H9nh4tBKG49k26ZjnOka_5_9c34PNpN_mg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Invariants for dissipative nonlinear systems by using rescaling</title><source>AIP Digital Archive</source><creator>Feix, Marc R. ; Lewis, H. Ralph</creator><creatorcontrib>Feix, Marc R. ; Lewis, H. Ralph ; Los Alamos National Laboratory, Center for Nonlinear Studies and CTR Division, Los Alamos, New Mexico 87545</creatorcontrib><description>A rescaling transformation of space and time is introduced in the study of nonlinear dissipative systems that are described by a second‐order differential equation with a friction term proportional to the velocity, β(t)v. The transformation is of the form (x,t)→(ξ,θ), where x=ξC(t)+α(t), dθ=d t/A 2(t). This rescaling is used to find each potential for which there exists an exact invariant quadratic in the velocity and to find the invariant. The invariants are found explicitly for a power‐law potential, γ(t)x m+1/(m+1), and an arbitrary coefficient of friction β(t). We show in an example how the rescaling transformation can be chosen to give an asymptotic solution of the equation in cases where the exact invariant does not exist. For certain parameters, the asymptotic solution is a self‐similar solution that is an attractor for all initial conditions. The technique of applying a rescaling transformation has been useful in other problems and may have additional practical applications.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.526750</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>990200 - Mathematics &amp; Computers ; ANALYTICAL SOLUTION ; DIFFERENTIAL EQUATIONS ; DISSIPATION FACTOR ; DISTURBANCES ; EQUATIONS ; Exact sciences and technology ; FLUID MECHANICS ; FRICTION ; GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE ; Geometry, differential geometry, and topology ; HYDRODYNAMICS ; MAGNETOHYDRODYNAMICS ; Mathematical methods in physics ; MECHANICS ; NUMERICAL SOLUTION ; Physics ; POTENTIALS ; SPACE-TIME ; TRANSFORMATIONS ; VELOCITY</subject><ispartof>J. Math. Phys. (N.Y.); (United States), 1985-01, Vol.26 (1), p.68-73</ispartof><rights>American Institute of Physics</rights><rights>1985 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-20c63b581a15597b1114dd4cbcee42f80fdfa53a5c936f3525e910ac75aae2fa3</citedby><cites>FETCH-LOGICAL-c349t-20c63b581a15597b1114dd4cbcee42f80fdfa53a5c936f3525e910ac75aae2fa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.526750$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,885,1559,4024,27923,27924,27925,76390</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=9274913$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/5990522$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Feix, Marc R.</creatorcontrib><creatorcontrib>Lewis, H. Ralph</creatorcontrib><creatorcontrib>Los Alamos National Laboratory, Center for Nonlinear Studies and CTR Division, Los Alamos, New Mexico 87545</creatorcontrib><title>Invariants for dissipative nonlinear systems by using rescaling</title><title>J. Math. Phys. (N.Y.); (United States)</title><description>A rescaling transformation of space and time is introduced in the study of nonlinear dissipative systems that are described by a second‐order differential equation with a friction term proportional to the velocity, β(t)v. The transformation is of the form (x,t)→(ξ,θ), where x=ξC(t)+α(t), dθ=d t/A 2(t). This rescaling is used to find each potential for which there exists an exact invariant quadratic in the velocity and to find the invariant. The invariants are found explicitly for a power‐law potential, γ(t)x m+1/(m+1), and an arbitrary coefficient of friction β(t). We show in an example how the rescaling transformation can be chosen to give an asymptotic solution of the equation in cases where the exact invariant does not exist. For certain parameters, the asymptotic solution is a self‐similar solution that is an attractor for all initial conditions. The technique of applying a rescaling transformation has been useful in other problems and may have additional practical applications.</description><subject>990200 - Mathematics &amp; Computers</subject><subject>ANALYTICAL SOLUTION</subject><subject>DIFFERENTIAL EQUATIONS</subject><subject>DISSIPATION FACTOR</subject><subject>DISTURBANCES</subject><subject>EQUATIONS</subject><subject>Exact sciences and technology</subject><subject>FLUID MECHANICS</subject><subject>FRICTION</subject><subject>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</subject><subject>Geometry, differential geometry, and topology</subject><subject>HYDRODYNAMICS</subject><subject>MAGNETOHYDRODYNAMICS</subject><subject>Mathematical methods in physics</subject><subject>MECHANICS</subject><subject>NUMERICAL SOLUTION</subject><subject>Physics</subject><subject>POTENTIALS</subject><subject>SPACE-TIME</subject><subject>TRANSFORMATIONS</subject><subject>VELOCITY</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1985</creationdate><recordtype>article</recordtype><recordid>eNp90E1Lw0AQBuBFFKxV8CcE8aCH1P1MsieR4keh4EXPy2SzW1faTdiJhf77pkR6ETzNYR7eYV5CrhmdMVqIBzZTvCgVPSETRiudl4WqTsmEUs5zLqvqnFwgflPKWCXlhDwu4hZSgNhj5tuUNQExdNCHrctiG9chOkgZ7rB3G8zqXfaDIa6y5NDCsFxdkjMPa3RXv3NKPl-eP-Zv-fL9dTF_WuZWSN3nnNpC1KpiwJTSZc0Yk00jbW2dk9xX1DcelABltSi8UFw5zSjYUgE47kFMyc2Y22IfDNrQO_tl2xid7Y3SmirOB3Q3IptaxOS86VLYQNoZRs2hHcPM2M5Ab0faweETnyDagEeveSk1EwO7H9nh4tBKG49k26ZjnOka_5_9c34PNpN_mg</recordid><startdate>198501</startdate><enddate>198501</enddate><creator>Feix, Marc R.</creator><creator>Lewis, H. Ralph</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>198501</creationdate><title>Invariants for dissipative nonlinear systems by using rescaling</title><author>Feix, Marc R. ; Lewis, H. Ralph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-20c63b581a15597b1114dd4cbcee42f80fdfa53a5c936f3525e910ac75aae2fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1985</creationdate><topic>990200 - Mathematics &amp; Computers</topic><topic>ANALYTICAL SOLUTION</topic><topic>DIFFERENTIAL EQUATIONS</topic><topic>DISSIPATION FACTOR</topic><topic>DISTURBANCES</topic><topic>EQUATIONS</topic><topic>Exact sciences and technology</topic><topic>FLUID MECHANICS</topic><topic>FRICTION</topic><topic>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</topic><topic>Geometry, differential geometry, and topology</topic><topic>HYDRODYNAMICS</topic><topic>MAGNETOHYDRODYNAMICS</topic><topic>Mathematical methods in physics</topic><topic>MECHANICS</topic><topic>NUMERICAL SOLUTION</topic><topic>Physics</topic><topic>POTENTIALS</topic><topic>SPACE-TIME</topic><topic>TRANSFORMATIONS</topic><topic>VELOCITY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feix, Marc R.</creatorcontrib><creatorcontrib>Lewis, H. Ralph</creatorcontrib><creatorcontrib>Los Alamos National Laboratory, Center for Nonlinear Studies and CTR Division, Los Alamos, New Mexico 87545</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>J. Math. Phys. (N.Y.); (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feix, Marc R.</au><au>Lewis, H. Ralph</au><aucorp>Los Alamos National Laboratory, Center for Nonlinear Studies and CTR Division, Los Alamos, New Mexico 87545</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Invariants for dissipative nonlinear systems by using rescaling</atitle><jtitle>J. Math. Phys. (N.Y.); (United States)</jtitle><date>1985-01</date><risdate>1985</risdate><volume>26</volume><issue>1</issue><spage>68</spage><epage>73</epage><pages>68-73</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>A rescaling transformation of space and time is introduced in the study of nonlinear dissipative systems that are described by a second‐order differential equation with a friction term proportional to the velocity, β(t)v. The transformation is of the form (x,t)→(ξ,θ), where x=ξC(t)+α(t), dθ=d t/A 2(t). This rescaling is used to find each potential for which there exists an exact invariant quadratic in the velocity and to find the invariant. The invariants are found explicitly for a power‐law potential, γ(t)x m+1/(m+1), and an arbitrary coefficient of friction β(t). We show in an example how the rescaling transformation can be chosen to give an asymptotic solution of the equation in cases where the exact invariant does not exist. For certain parameters, the asymptotic solution is a self‐similar solution that is an attractor for all initial conditions. The technique of applying a rescaling transformation has been useful in other problems and may have additional practical applications.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.526750</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof J. Math. Phys. (N.Y.); (United States), 1985-01, Vol.26 (1), p.68-73
issn 0022-2488
1089-7658
language eng
recordid cdi_pascalfrancis_primary_9274913
source AIP Digital Archive
subjects 990200 - Mathematics & Computers
ANALYTICAL SOLUTION
DIFFERENTIAL EQUATIONS
DISSIPATION FACTOR
DISTURBANCES
EQUATIONS
Exact sciences and technology
FLUID MECHANICS
FRICTION
GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE
Geometry, differential geometry, and topology
HYDRODYNAMICS
MAGNETOHYDRODYNAMICS
Mathematical methods in physics
MECHANICS
NUMERICAL SOLUTION
Physics
POTENTIALS
SPACE-TIME
TRANSFORMATIONS
VELOCITY
title Invariants for dissipative nonlinear systems by using rescaling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A06%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Invariants%20for%20dissipative%20nonlinear%20systems%20by%20using%20rescaling&rft.jtitle=J.%20Math.%20Phys.%20(N.Y.);%20(United%20States)&rft.au=Feix,%20Marc%20R.&rft.aucorp=Los%20Alamos%20National%20Laboratory,%20Center%20for%20Nonlinear%20Studies%20and%20CTR%20Division,%20Los%20Alamos,%20New%20Mexico%2087545&rft.date=1985-01&rft.volume=26&rft.issue=1&rft.spage=68&rft.epage=73&rft.pages=68-73&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.526750&rft_dat=%3Cscitation_pasca%3Ejmp%3C/scitation_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true