Three-Dimensional Shape Description Using the Symmetric Axis Transform I: Theory
Blum's two-dimensional shape description method based on the symmetric axis transform (SAT) is generalized to three dimensions. The method uniquely decomposes an object into a collection of sub-objects each drawn from three separate, but not completely independent, primitive sets defined in the...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence 1985-03, Vol.PAMI-7 (2), p.187-202 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 202 |
---|---|
container_issue | 2 |
container_start_page | 187 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | PAMI-7 |
creator | Lee R. Nackman Pizer, Stephen M. |
description | Blum's two-dimensional shape description method based on the symmetric axis transform (SAT) is generalized to three dimensions. The method uniquely decomposes an object into a collection of sub-objects each drawn from three separate, but not completely independent, primitive sets defined in the paper: width primitives, based on radius function properties; axis primitives, based on symmetric axis curvatures; and boundary primitives, based on boundary surface curvatures. Width primitives are themselves comprised of two components: slope districts and curvature districts. Visualizing the radius function as if it were the height function of some mountainous terrain, each slope district corresponds to a mountain face together with the valley below it. Curvature districts further partition each slope district into regions that are locally convex, concave, or saddle-like. Similarly, axis (boundary) primitives are regions of the symmetric surface where the symmetric surface (boundary surfaces) are locally convex, concave, or saddle-like. Relations among the primitive sets are discussed. |
doi_str_mv | 10.1109/TPAMI.1985.4767643 |
format | Article |
fullrecord | <record><control><sourceid>pascalfrancis_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_9271722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4767643</ieee_id><sourcerecordid>9271722</sourcerecordid><originalsourceid>FETCH-LOGICAL-c209t-bee14494c4c233a082087e755cc7e370482f0b3d3d20d5337a04b7b69dd387f63</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwA7Dxgm2KX4ltdlXLo1IRlZquI8eZEKPmITsL8vektHQ10sw9V6OD0D0lM0qJfko384_VjGoVz4RMZCL4BZpQzXXEY64v0YTQhEVKMXWNbkL4JoSKmPAJ2qSVB4iWroYmuLYxe7ytTAd4CcF61_XjDu-Ca75wXwHeDnUNvXcWz39cwKk3TShbX-PVM04raP1wi65Ksw9wd5pTtHt9SRfv0frzbbWYryPLiO6jHIAKoYUVlnFuiGJESZBxbK0ELolQrCQ5L3jBSBFzLg0RucwTXRRcyTLhU8SOvda3IXgos8672vghoyQ7OMn-nGQHJ9nJyQg9HqHOBGv25fi-deFMaiapZGyMPRxjDgDO1_-SX9WBaho</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Three-Dimensional Shape Description Using the Symmetric Axis Transform I: Theory</title><source>IEEE Electronic Library (IEL)</source><creator>Lee R. Nackman ; Pizer, Stephen M.</creator><creatorcontrib>Lee R. Nackman ; Pizer, Stephen M.</creatorcontrib><description>Blum's two-dimensional shape description method based on the symmetric axis transform (SAT) is generalized to three dimensions. The method uniquely decomposes an object into a collection of sub-objects each drawn from three separate, but not completely independent, primitive sets defined in the paper: width primitives, based on radius function properties; axis primitives, based on symmetric axis curvatures; and boundary primitives, based on boundary surface curvatures. Width primitives are themselves comprised of two components: slope districts and curvature districts. Visualizing the radius function as if it were the height function of some mountainous terrain, each slope district corresponds to a mountain face together with the valley below it. Curvature districts further partition each slope district into regions that are locally convex, concave, or saddle-like. Similarly, axis (boundary) primitives are regions of the symmetric surface where the symmetric surface (boundary surfaces) are locally convex, concave, or saddle-like. Relations among the primitive sets are discussed.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>DOI: 10.1109/TPAMI.1985.4767643</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>Los Alamitos, CA: IEEE</publisher><subject>Applied sciences ; Artificial intelligence ; Biomedical imaging ; Computed tomography ; Computer science ; Computer science; control theory; systems ; Data acquisition ; Data mining ; Exact sciences and technology ; Hospitals ; Humans ; Pattern recognition. Digital image processing. Computational geometry ; Shape decomposition ; shape description ; Shape measurement ; Surface morphology ; symmetric axis transform ; Visualization</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 1985-03, Vol.PAMI-7 (2), p.187-202</ispartof><rights>1985 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c209t-bee14494c4c233a082087e755cc7e370482f0b3d3d20d5337a04b7b69dd387f63</citedby><cites>FETCH-LOGICAL-c209t-bee14494c4c233a082087e755cc7e370482f0b3d3d20d5337a04b7b69dd387f63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4767643$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4767643$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=9271722$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee R. Nackman</creatorcontrib><creatorcontrib>Pizer, Stephen M.</creatorcontrib><title>Three-Dimensional Shape Description Using the Symmetric Axis Transform I: Theory</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><description>Blum's two-dimensional shape description method based on the symmetric axis transform (SAT) is generalized to three dimensions. The method uniquely decomposes an object into a collection of sub-objects each drawn from three separate, but not completely independent, primitive sets defined in the paper: width primitives, based on radius function properties; axis primitives, based on symmetric axis curvatures; and boundary primitives, based on boundary surface curvatures. Width primitives are themselves comprised of two components: slope districts and curvature districts. Visualizing the radius function as if it were the height function of some mountainous terrain, each slope district corresponds to a mountain face together with the valley below it. Curvature districts further partition each slope district into regions that are locally convex, concave, or saddle-like. Similarly, axis (boundary) primitives are regions of the symmetric surface where the symmetric surface (boundary surfaces) are locally convex, concave, or saddle-like. Relations among the primitive sets are discussed.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Biomedical imaging</subject><subject>Computed tomography</subject><subject>Computer science</subject><subject>Computer science; control theory; systems</subject><subject>Data acquisition</subject><subject>Data mining</subject><subject>Exact sciences and technology</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Shape decomposition</subject><subject>shape description</subject><subject>Shape measurement</subject><subject>Surface morphology</subject><subject>symmetric axis transform</subject><subject>Visualization</subject><issn>0162-8828</issn><issn>1939-3539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1985</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRS0EEqXwA7Dxgm2KX4ltdlXLo1IRlZquI8eZEKPmITsL8vektHQ10sw9V6OD0D0lM0qJfko384_VjGoVz4RMZCL4BZpQzXXEY64v0YTQhEVKMXWNbkL4JoSKmPAJ2qSVB4iWroYmuLYxe7ytTAd4CcF61_XjDu-Ca75wXwHeDnUNvXcWz39cwKk3TShbX-PVM04raP1wi65Ksw9wd5pTtHt9SRfv0frzbbWYryPLiO6jHIAKoYUVlnFuiGJESZBxbK0ELolQrCQ5L3jBSBFzLg0RucwTXRRcyTLhU8SOvda3IXgos8672vghoyQ7OMn-nGQHJ9nJyQg9HqHOBGv25fi-deFMaiapZGyMPRxjDgDO1_-SX9WBaho</recordid><startdate>198503</startdate><enddate>198503</enddate><creator>Lee R. Nackman</creator><creator>Pizer, Stephen M.</creator><general>IEEE</general><general>IEEE Computer Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>198503</creationdate><title>Three-Dimensional Shape Description Using the Symmetric Axis Transform I: Theory</title><author>Lee R. Nackman ; Pizer, Stephen M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c209t-bee14494c4c233a082087e755cc7e370482f0b3d3d20d5337a04b7b69dd387f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1985</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Biomedical imaging</topic><topic>Computed tomography</topic><topic>Computer science</topic><topic>Computer science; control theory; systems</topic><topic>Data acquisition</topic><topic>Data mining</topic><topic>Exact sciences and technology</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Shape decomposition</topic><topic>shape description</topic><topic>Shape measurement</topic><topic>Surface morphology</topic><topic>symmetric axis transform</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee R. Nackman</creatorcontrib><creatorcontrib>Pizer, Stephen M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lee R. Nackman</au><au>Pizer, Stephen M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-Dimensional Shape Description Using the Symmetric Axis Transform I: Theory</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><date>1985-03</date><risdate>1985</risdate><volume>PAMI-7</volume><issue>2</issue><spage>187</spage><epage>202</epage><pages>187-202</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><coden>ITPIDJ</coden><abstract>Blum's two-dimensional shape description method based on the symmetric axis transform (SAT) is generalized to three dimensions. The method uniquely decomposes an object into a collection of sub-objects each drawn from three separate, but not completely independent, primitive sets defined in the paper: width primitives, based on radius function properties; axis primitives, based on symmetric axis curvatures; and boundary primitives, based on boundary surface curvatures. Width primitives are themselves comprised of two components: slope districts and curvature districts. Visualizing the radius function as if it were the height function of some mountainous terrain, each slope district corresponds to a mountain face together with the valley below it. Curvature districts further partition each slope district into regions that are locally convex, concave, or saddle-like. Similarly, axis (boundary) primitives are regions of the symmetric surface where the symmetric surface (boundary surfaces) are locally convex, concave, or saddle-like. Relations among the primitive sets are discussed.</abstract><cop>Los Alamitos, CA</cop><pub>IEEE</pub><doi>10.1109/TPAMI.1985.4767643</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 1985-03, Vol.PAMI-7 (2), p.187-202 |
issn | 0162-8828 1939-3539 |
language | eng |
recordid | cdi_pascalfrancis_primary_9271722 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Artificial intelligence Biomedical imaging Computed tomography Computer science Computer science control theory systems Data acquisition Data mining Exact sciences and technology Hospitals Humans Pattern recognition. Digital image processing. Computational geometry Shape decomposition shape description Shape measurement Surface morphology symmetric axis transform Visualization |
title | Three-Dimensional Shape Description Using the Symmetric Axis Transform I: Theory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T08%3A57%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-Dimensional%20Shape%20Description%20Using%20the%20Symmetric%20Axis%20Transform%20I:%20Theory&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Lee%20R.%20Nackman&rft.date=1985-03&rft.volume=PAMI-7&rft.issue=2&rft.spage=187&rft.epage=202&rft.pages=187-202&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.1985.4767643&rft_dat=%3Cpascalfrancis_RIE%3E9271722%3C/pascalfrancis_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4767643&rfr_iscdi=true |