Three-Dimensional Shape Description Using the Symmetric Axis Transform I: Theory

Blum's two-dimensional shape description method based on the symmetric axis transform (SAT) is generalized to three dimensions. The method uniquely decomposes an object into a collection of sub-objects each drawn from three separate, but not completely independent, primitive sets defined in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 1985-03, Vol.PAMI-7 (2), p.187-202
Hauptverfasser: Lee R. Nackman, Pizer, Stephen M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 202
container_issue 2
container_start_page 187
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume PAMI-7
creator Lee R. Nackman
Pizer, Stephen M.
description Blum's two-dimensional shape description method based on the symmetric axis transform (SAT) is generalized to three dimensions. The method uniquely decomposes an object into a collection of sub-objects each drawn from three separate, but not completely independent, primitive sets defined in the paper: width primitives, based on radius function properties; axis primitives, based on symmetric axis curvatures; and boundary primitives, based on boundary surface curvatures. Width primitives are themselves comprised of two components: slope districts and curvature districts. Visualizing the radius function as if it were the height function of some mountainous terrain, each slope district corresponds to a mountain face together with the valley below it. Curvature districts further partition each slope district into regions that are locally convex, concave, or saddle-like. Similarly, axis (boundary) primitives are regions of the symmetric surface where the symmetric surface (boundary surfaces) are locally convex, concave, or saddle-like. Relations among the primitive sets are discussed.
doi_str_mv 10.1109/TPAMI.1985.4767643
format Article
fullrecord <record><control><sourceid>pascalfrancis_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_9271722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4767643</ieee_id><sourcerecordid>9271722</sourcerecordid><originalsourceid>FETCH-LOGICAL-c209t-bee14494c4c233a082087e755cc7e370482f0b3d3d20d5337a04b7b69dd387f63</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwA7Dxgm2KX4ltdlXLo1IRlZquI8eZEKPmITsL8vektHQ10sw9V6OD0D0lM0qJfko384_VjGoVz4RMZCL4BZpQzXXEY64v0YTQhEVKMXWNbkL4JoSKmPAJ2qSVB4iWroYmuLYxe7ytTAd4CcF61_XjDu-Ca75wXwHeDnUNvXcWz39cwKk3TShbX-PVM04raP1wi65Ksw9wd5pTtHt9SRfv0frzbbWYryPLiO6jHIAKoYUVlnFuiGJESZBxbK0ELolQrCQ5L3jBSBFzLg0RucwTXRRcyTLhU8SOvda3IXgos8672vghoyQ7OMn-nGQHJ9nJyQg9HqHOBGv25fi-deFMaiapZGyMPRxjDgDO1_-SX9WBaho</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Three-Dimensional Shape Description Using the Symmetric Axis Transform I: Theory</title><source>IEEE Electronic Library (IEL)</source><creator>Lee R. Nackman ; Pizer, Stephen M.</creator><creatorcontrib>Lee R. Nackman ; Pizer, Stephen M.</creatorcontrib><description>Blum's two-dimensional shape description method based on the symmetric axis transform (SAT) is generalized to three dimensions. The method uniquely decomposes an object into a collection of sub-objects each drawn from three separate, but not completely independent, primitive sets defined in the paper: width primitives, based on radius function properties; axis primitives, based on symmetric axis curvatures; and boundary primitives, based on boundary surface curvatures. Width primitives are themselves comprised of two components: slope districts and curvature districts. Visualizing the radius function as if it were the height function of some mountainous terrain, each slope district corresponds to a mountain face together with the valley below it. Curvature districts further partition each slope district into regions that are locally convex, concave, or saddle-like. Similarly, axis (boundary) primitives are regions of the symmetric surface where the symmetric surface (boundary surfaces) are locally convex, concave, or saddle-like. Relations among the primitive sets are discussed.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>DOI: 10.1109/TPAMI.1985.4767643</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>Los Alamitos, CA: IEEE</publisher><subject>Applied sciences ; Artificial intelligence ; Biomedical imaging ; Computed tomography ; Computer science ; Computer science; control theory; systems ; Data acquisition ; Data mining ; Exact sciences and technology ; Hospitals ; Humans ; Pattern recognition. Digital image processing. Computational geometry ; Shape decomposition ; shape description ; Shape measurement ; Surface morphology ; symmetric axis transform ; Visualization</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 1985-03, Vol.PAMI-7 (2), p.187-202</ispartof><rights>1985 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c209t-bee14494c4c233a082087e755cc7e370482f0b3d3d20d5337a04b7b69dd387f63</citedby><cites>FETCH-LOGICAL-c209t-bee14494c4c233a082087e755cc7e370482f0b3d3d20d5337a04b7b69dd387f63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4767643$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4767643$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=9271722$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee R. Nackman</creatorcontrib><creatorcontrib>Pizer, Stephen M.</creatorcontrib><title>Three-Dimensional Shape Description Using the Symmetric Axis Transform I: Theory</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><description>Blum's two-dimensional shape description method based on the symmetric axis transform (SAT) is generalized to three dimensions. The method uniquely decomposes an object into a collection of sub-objects each drawn from three separate, but not completely independent, primitive sets defined in the paper: width primitives, based on radius function properties; axis primitives, based on symmetric axis curvatures; and boundary primitives, based on boundary surface curvatures. Width primitives are themselves comprised of two components: slope districts and curvature districts. Visualizing the radius function as if it were the height function of some mountainous terrain, each slope district corresponds to a mountain face together with the valley below it. Curvature districts further partition each slope district into regions that are locally convex, concave, or saddle-like. Similarly, axis (boundary) primitives are regions of the symmetric surface where the symmetric surface (boundary surfaces) are locally convex, concave, or saddle-like. Relations among the primitive sets are discussed.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Biomedical imaging</subject><subject>Computed tomography</subject><subject>Computer science</subject><subject>Computer science; control theory; systems</subject><subject>Data acquisition</subject><subject>Data mining</subject><subject>Exact sciences and technology</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Shape decomposition</subject><subject>shape description</subject><subject>Shape measurement</subject><subject>Surface morphology</subject><subject>symmetric axis transform</subject><subject>Visualization</subject><issn>0162-8828</issn><issn>1939-3539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1985</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRS0EEqXwA7Dxgm2KX4ltdlXLo1IRlZquI8eZEKPmITsL8vektHQ10sw9V6OD0D0lM0qJfko384_VjGoVz4RMZCL4BZpQzXXEY64v0YTQhEVKMXWNbkL4JoSKmPAJ2qSVB4iWroYmuLYxe7ytTAd4CcF61_XjDu-Ca75wXwHeDnUNvXcWz39cwKk3TShbX-PVM04raP1wi65Ksw9wd5pTtHt9SRfv0frzbbWYryPLiO6jHIAKoYUVlnFuiGJESZBxbK0ELolQrCQ5L3jBSBFzLg0RucwTXRRcyTLhU8SOvda3IXgos8672vghoyQ7OMn-nGQHJ9nJyQg9HqHOBGv25fi-deFMaiapZGyMPRxjDgDO1_-SX9WBaho</recordid><startdate>198503</startdate><enddate>198503</enddate><creator>Lee R. Nackman</creator><creator>Pizer, Stephen M.</creator><general>IEEE</general><general>IEEE Computer Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>198503</creationdate><title>Three-Dimensional Shape Description Using the Symmetric Axis Transform I: Theory</title><author>Lee R. Nackman ; Pizer, Stephen M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c209t-bee14494c4c233a082087e755cc7e370482f0b3d3d20d5337a04b7b69dd387f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1985</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Biomedical imaging</topic><topic>Computed tomography</topic><topic>Computer science</topic><topic>Computer science; control theory; systems</topic><topic>Data acquisition</topic><topic>Data mining</topic><topic>Exact sciences and technology</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Shape decomposition</topic><topic>shape description</topic><topic>Shape measurement</topic><topic>Surface morphology</topic><topic>symmetric axis transform</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee R. Nackman</creatorcontrib><creatorcontrib>Pizer, Stephen M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lee R. Nackman</au><au>Pizer, Stephen M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-Dimensional Shape Description Using the Symmetric Axis Transform I: Theory</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><date>1985-03</date><risdate>1985</risdate><volume>PAMI-7</volume><issue>2</issue><spage>187</spage><epage>202</epage><pages>187-202</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><coden>ITPIDJ</coden><abstract>Blum's two-dimensional shape description method based on the symmetric axis transform (SAT) is generalized to three dimensions. The method uniquely decomposes an object into a collection of sub-objects each drawn from three separate, but not completely independent, primitive sets defined in the paper: width primitives, based on radius function properties; axis primitives, based on symmetric axis curvatures; and boundary primitives, based on boundary surface curvatures. Width primitives are themselves comprised of two components: slope districts and curvature districts. Visualizing the radius function as if it were the height function of some mountainous terrain, each slope district corresponds to a mountain face together with the valley below it. Curvature districts further partition each slope district into regions that are locally convex, concave, or saddle-like. Similarly, axis (boundary) primitives are regions of the symmetric surface where the symmetric surface (boundary surfaces) are locally convex, concave, or saddle-like. Relations among the primitive sets are discussed.</abstract><cop>Los Alamitos, CA</cop><pub>IEEE</pub><doi>10.1109/TPAMI.1985.4767643</doi><tpages>16</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 1985-03, Vol.PAMI-7 (2), p.187-202
issn 0162-8828
1939-3539
language eng
recordid cdi_pascalfrancis_primary_9271722
source IEEE Electronic Library (IEL)
subjects Applied sciences
Artificial intelligence
Biomedical imaging
Computed tomography
Computer science
Computer science
control theory
systems
Data acquisition
Data mining
Exact sciences and technology
Hospitals
Humans
Pattern recognition. Digital image processing. Computational geometry
Shape decomposition
shape description
Shape measurement
Surface morphology
symmetric axis transform
Visualization
title Three-Dimensional Shape Description Using the Symmetric Axis Transform I: Theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T08%3A57%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-Dimensional%20Shape%20Description%20Using%20the%20Symmetric%20Axis%20Transform%20I:%20Theory&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Lee%20R.%20Nackman&rft.date=1985-03&rft.volume=PAMI-7&rft.issue=2&rft.spage=187&rft.epage=202&rft.pages=187-202&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.1985.4767643&rft_dat=%3Cpascalfrancis_RIE%3E9271722%3C/pascalfrancis_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4767643&rfr_iscdi=true