Quasi‐steady‐state toroidal discharges
A method for maintaining toroidal current in toroidal plasmas is discussed. The method requires application of suitably phased oscillating toroidal and poloidal voltages to the plasma resulting in a magnetic field configuration with small oscillations around some mean state. In such quasi‐steady sta...
Gespeichert in:
Veröffentlicht in: | Phys. Fluids; (United States) 1985-06, Vol.28 (6), p.1826-1836 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1836 |
---|---|
container_issue | 6 |
container_start_page | 1826 |
container_title | Phys. Fluids; (United States) |
container_volume | 28 |
creator | Bevir, M. K. Gimblett, C. G. Miller, Guthrie |
description | A method for maintaining toroidal current in toroidal plasmas is discussed. The method requires application of suitably phased oscillating toroidal and poloidal voltages to the plasma resulting in a magnetic field configuration with small oscillations around some mean state. In such quasi‐steady states the usual v sec limitation on discharge duration is eliminated. The current drive effect is caused by a nonlinear interaction between the toroidal and poloidal circuits that can be understood in general terms from symmetry considerations. Specific calculations of the effect are made using two models: (1) a zero‐dimensional relaxation model, relevant to the reversed‐field pinch, and (2) a one‐dimensional resistive diffusion model (assuming slab geometry). The results for the relaxation model indicate a useful current drive effect that may be of importance for the reversed‐field‐pinch program. |
doi_str_mv | 10.1063/1.864926 |
format | Article |
fullrecord | <record><control><sourceid>scitation_osti_</sourceid><recordid>TN_cdi_pascalfrancis_primary_9215185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1063_1_864926</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-4eacd4bca0d5a041166c7feafa8002a99ea6318acb65b2c7fe2403557e7c0433</originalsourceid><addsrcrecordid>eNp10M1KAzEQB_AgCtYq-AhFPKiwNbP52OQoxS8oiNB7mM5mbaTuliQeevMRfEafxK0r3jzNwPz4D_wZOwU-Ba7FNUyNlrbUe2xUghaFtNbssxHnAgoLFRyyo5ReOS8lSDFiV8_vmMLXx2fKHuvtz4LZT3IXu1DjelKHRCuMLz4ds4MG18mf_M4xW9zdLmYPxfzp_nF2My9IGJEL6ZFquSTktUIuAbSmqvHYoOm_orUetQCDtNRqWe5OpeRCqcpXxKUQY3Y2xHYpB5coZE8r6trWU3bKKMN7PmYXA6LYpRR94zYxvGHcOuBu14MDN_TQ0_OBbjARrpuILYX0520JCozq2eXAdh8xh679P_IbQfJqew</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quasi‐steady‐state toroidal discharges</title><source>Alma/SFX Local Collection</source><creator>Bevir, M. K. ; Gimblett, C. G. ; Miller, Guthrie</creator><creatorcontrib>Bevir, M. K. ; Gimblett, C. G. ; Miller, Guthrie ; Euratom/UKAEA Fusion Association, Culham Laboratory, Abingdon, Oxon, OX14 3DB, England</creatorcontrib><description>A method for maintaining toroidal current in toroidal plasmas is discussed. The method requires application of suitably phased oscillating toroidal and poloidal voltages to the plasma resulting in a magnetic field configuration with small oscillations around some mean state. In such quasi‐steady states the usual v sec limitation on discharge duration is eliminated. The current drive effect is caused by a nonlinear interaction between the toroidal and poloidal circuits that can be understood in general terms from symmetry considerations. Specific calculations of the effect are made using two models: (1) a zero‐dimensional relaxation model, relevant to the reversed‐field pinch, and (2) a one‐dimensional resistive diffusion model (assuming slab geometry). The results for the relaxation model indicate a useful current drive effect that may be of importance for the reversed‐field‐pinch program.</description><identifier>ISSN: 0031-9171</identifier><identifier>EISSN: 2163-4998</identifier><identifier>DOI: 10.1063/1.864926</identifier><identifier>CODEN: PFLDAS</identifier><language>eng</language><publisher>Woodbury, NY: American Institute of Physics</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; 700101 - Fusion Energy- Plasma Research- Confinement, Heating, & Production ; ANNULAR SPACE ; CONFIGURATION ; CURRENT-DRIVE HEATING ; ELECTRIC HEATING ; EQUILIBRIUM ; Exact sciences and technology ; HEATING ; JOULE HEATING ; Magnetic confinement and equilibrium ; MAGNETIC FIELD CONFIGURATIONS ; NONLINEAR PROBLEMS ; Physics ; Physics of gases, plasmas and electric discharges ; Physics of plasmas and electric discharges ; PINCH EFFECT ; PLASMA ; PLASMA HEATING ; PLASMA SIMULATION ; RESISTANCE HEATING ; REVERSE-FIELD PINCH ; SIMULATION ; SPACE ; STEADY-STATE CONDITIONS ; TOROIDAL CONFIGURATION</subject><ispartof>Phys. Fluids; (United States), 1985-06, Vol.28 (6), p.1826-1836</ispartof><rights>American Institute of Physics</rights><rights>1985 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-4eacd4bca0d5a041166c7feafa8002a99ea6318acb65b2c7fe2403557e7c0433</citedby><cites>FETCH-LOGICAL-c383t-4eacd4bca0d5a041166c7feafa8002a99ea6318acb65b2c7fe2403557e7c0433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=9215185$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/5858040$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bevir, M. K.</creatorcontrib><creatorcontrib>Gimblett, C. G.</creatorcontrib><creatorcontrib>Miller, Guthrie</creatorcontrib><creatorcontrib>Euratom/UKAEA Fusion Association, Culham Laboratory, Abingdon, Oxon, OX14 3DB, England</creatorcontrib><title>Quasi‐steady‐state toroidal discharges</title><title>Phys. Fluids; (United States)</title><description>A method for maintaining toroidal current in toroidal plasmas is discussed. The method requires application of suitably phased oscillating toroidal and poloidal voltages to the plasma resulting in a magnetic field configuration with small oscillations around some mean state. In such quasi‐steady states the usual v sec limitation on discharge duration is eliminated. The current drive effect is caused by a nonlinear interaction between the toroidal and poloidal circuits that can be understood in general terms from symmetry considerations. Specific calculations of the effect are made using two models: (1) a zero‐dimensional relaxation model, relevant to the reversed‐field pinch, and (2) a one‐dimensional resistive diffusion model (assuming slab geometry). The results for the relaxation model indicate a useful current drive effect that may be of importance for the reversed‐field‐pinch program.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>700101 - Fusion Energy- Plasma Research- Confinement, Heating, & Production</subject><subject>ANNULAR SPACE</subject><subject>CONFIGURATION</subject><subject>CURRENT-DRIVE HEATING</subject><subject>ELECTRIC HEATING</subject><subject>EQUILIBRIUM</subject><subject>Exact sciences and technology</subject><subject>HEATING</subject><subject>JOULE HEATING</subject><subject>Magnetic confinement and equilibrium</subject><subject>MAGNETIC FIELD CONFIGURATIONS</subject><subject>NONLINEAR PROBLEMS</subject><subject>Physics</subject><subject>Physics of gases, plasmas and electric discharges</subject><subject>Physics of plasmas and electric discharges</subject><subject>PINCH EFFECT</subject><subject>PLASMA</subject><subject>PLASMA HEATING</subject><subject>PLASMA SIMULATION</subject><subject>RESISTANCE HEATING</subject><subject>REVERSE-FIELD PINCH</subject><subject>SIMULATION</subject><subject>SPACE</subject><subject>STEADY-STATE CONDITIONS</subject><subject>TOROIDAL CONFIGURATION</subject><issn>0031-9171</issn><issn>2163-4998</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1985</creationdate><recordtype>article</recordtype><recordid>eNp10M1KAzEQB_AgCtYq-AhFPKiwNbP52OQoxS8oiNB7mM5mbaTuliQeevMRfEafxK0r3jzNwPz4D_wZOwU-Ba7FNUyNlrbUe2xUghaFtNbssxHnAgoLFRyyo5ReOS8lSDFiV8_vmMLXx2fKHuvtz4LZT3IXu1DjelKHRCuMLz4ds4MG18mf_M4xW9zdLmYPxfzp_nF2My9IGJEL6ZFquSTktUIuAbSmqvHYoOm_orUetQCDtNRqWe5OpeRCqcpXxKUQY3Y2xHYpB5coZE8r6trWU3bKKMN7PmYXA6LYpRR94zYxvGHcOuBu14MDN_TQ0_OBbjARrpuILYX0520JCozq2eXAdh8xh679P_IbQfJqew</recordid><startdate>198506</startdate><enddate>198506</enddate><creator>Bevir, M. K.</creator><creator>Gimblett, C. G.</creator><creator>Miller, Guthrie</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>198506</creationdate><title>Quasi‐steady‐state toroidal discharges</title><author>Bevir, M. K. ; Gimblett, C. G. ; Miller, Guthrie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-4eacd4bca0d5a041166c7feafa8002a99ea6318acb65b2c7fe2403557e7c0433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1985</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>700101 - Fusion Energy- Plasma Research- Confinement, Heating, & Production</topic><topic>ANNULAR SPACE</topic><topic>CONFIGURATION</topic><topic>CURRENT-DRIVE HEATING</topic><topic>ELECTRIC HEATING</topic><topic>EQUILIBRIUM</topic><topic>Exact sciences and technology</topic><topic>HEATING</topic><topic>JOULE HEATING</topic><topic>Magnetic confinement and equilibrium</topic><topic>MAGNETIC FIELD CONFIGURATIONS</topic><topic>NONLINEAR PROBLEMS</topic><topic>Physics</topic><topic>Physics of gases, plasmas and electric discharges</topic><topic>Physics of plasmas and electric discharges</topic><topic>PINCH EFFECT</topic><topic>PLASMA</topic><topic>PLASMA HEATING</topic><topic>PLASMA SIMULATION</topic><topic>RESISTANCE HEATING</topic><topic>REVERSE-FIELD PINCH</topic><topic>SIMULATION</topic><topic>SPACE</topic><topic>STEADY-STATE CONDITIONS</topic><topic>TOROIDAL CONFIGURATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bevir, M. K.</creatorcontrib><creatorcontrib>Gimblett, C. G.</creatorcontrib><creatorcontrib>Miller, Guthrie</creatorcontrib><creatorcontrib>Euratom/UKAEA Fusion Association, Culham Laboratory, Abingdon, Oxon, OX14 3DB, England</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Phys. Fluids; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bevir, M. K.</au><au>Gimblett, C. G.</au><au>Miller, Guthrie</au><aucorp>Euratom/UKAEA Fusion Association, Culham Laboratory, Abingdon, Oxon, OX14 3DB, England</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quasi‐steady‐state toroidal discharges</atitle><jtitle>Phys. Fluids; (United States)</jtitle><date>1985-06</date><risdate>1985</risdate><volume>28</volume><issue>6</issue><spage>1826</spage><epage>1836</epage><pages>1826-1836</pages><issn>0031-9171</issn><eissn>2163-4998</eissn><coden>PFLDAS</coden><abstract>A method for maintaining toroidal current in toroidal plasmas is discussed. The method requires application of suitably phased oscillating toroidal and poloidal voltages to the plasma resulting in a magnetic field configuration with small oscillations around some mean state. In such quasi‐steady states the usual v sec limitation on discharge duration is eliminated. The current drive effect is caused by a nonlinear interaction between the toroidal and poloidal circuits that can be understood in general terms from symmetry considerations. Specific calculations of the effect are made using two models: (1) a zero‐dimensional relaxation model, relevant to the reversed‐field pinch, and (2) a one‐dimensional resistive diffusion model (assuming slab geometry). The results for the relaxation model indicate a useful current drive effect that may be of importance for the reversed‐field‐pinch program.</abstract><cop>Woodbury, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.864926</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9171 |
ispartof | Phys. Fluids; (United States), 1985-06, Vol.28 (6), p.1826-1836 |
issn | 0031-9171 2163-4998 |
language | eng |
recordid | cdi_pascalfrancis_primary_9215185 |
source | Alma/SFX Local Collection |
subjects | 70 PLASMA PHYSICS AND FUSION TECHNOLOGY 700101 - Fusion Energy- Plasma Research- Confinement, Heating, & Production ANNULAR SPACE CONFIGURATION CURRENT-DRIVE HEATING ELECTRIC HEATING EQUILIBRIUM Exact sciences and technology HEATING JOULE HEATING Magnetic confinement and equilibrium MAGNETIC FIELD CONFIGURATIONS NONLINEAR PROBLEMS Physics Physics of gases, plasmas and electric discharges Physics of plasmas and electric discharges PINCH EFFECT PLASMA PLASMA HEATING PLASMA SIMULATION RESISTANCE HEATING REVERSE-FIELD PINCH SIMULATION SPACE STEADY-STATE CONDITIONS TOROIDAL CONFIGURATION |
title | Quasi‐steady‐state toroidal discharges |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T16%3A48%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quasi%E2%80%90steady%E2%80%90state%20toroidal%20discharges&rft.jtitle=Phys.%20Fluids;%20(United%20States)&rft.au=Bevir,%20M.%20K.&rft.aucorp=Euratom/UKAEA%20Fusion%20Association,%20Culham%20Laboratory,%20Abingdon,%20Oxon,%20OX14%203DB,%20England&rft.date=1985-06&rft.volume=28&rft.issue=6&rft.spage=1826&rft.epage=1836&rft.pages=1826-1836&rft.issn=0031-9171&rft.eissn=2163-4998&rft.coden=PFLDAS&rft_id=info:doi/10.1063/1.864926&rft_dat=%3Cscitation_osti_%3Escitation_primary_10_1063_1_864926%3C/scitation_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |