Quasi‐steady‐state toroidal discharges

A method for maintaining toroidal current in toroidal plasmas is discussed. The method requires application of suitably phased oscillating toroidal and poloidal voltages to the plasma resulting in a magnetic field configuration with small oscillations around some mean state. In such quasi‐steady sta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Phys. Fluids; (United States) 1985-06, Vol.28 (6), p.1826-1836
Hauptverfasser: Bevir, M. K., Gimblett, C. G., Miller, Guthrie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1836
container_issue 6
container_start_page 1826
container_title Phys. Fluids; (United States)
container_volume 28
creator Bevir, M. K.
Gimblett, C. G.
Miller, Guthrie
description A method for maintaining toroidal current in toroidal plasmas is discussed. The method requires application of suitably phased oscillating toroidal and poloidal voltages to the plasma resulting in a magnetic field configuration with small oscillations around some mean state. In such quasi‐steady states the usual v sec limitation on discharge duration is eliminated. The current drive effect is caused by a nonlinear interaction between the toroidal and poloidal circuits that can be understood in general terms from symmetry considerations. Specific calculations of the effect are made using two models: (1) a zero‐dimensional relaxation model, relevant to the reversed‐field pinch, and (2) a one‐dimensional resistive diffusion model (assuming slab geometry). The results for the relaxation model indicate a useful current drive effect that may be of importance for the reversed‐field‐pinch program.
doi_str_mv 10.1063/1.864926
format Article
fullrecord <record><control><sourceid>scitation_osti_</sourceid><recordid>TN_cdi_pascalfrancis_primary_9215185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1063_1_864926</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-4eacd4bca0d5a041166c7feafa8002a99ea6318acb65b2c7fe2403557e7c0433</originalsourceid><addsrcrecordid>eNp10M1KAzEQB_AgCtYq-AhFPKiwNbP52OQoxS8oiNB7mM5mbaTuliQeevMRfEafxK0r3jzNwPz4D_wZOwU-Ba7FNUyNlrbUe2xUghaFtNbssxHnAgoLFRyyo5ReOS8lSDFiV8_vmMLXx2fKHuvtz4LZT3IXu1DjelKHRCuMLz4ds4MG18mf_M4xW9zdLmYPxfzp_nF2My9IGJEL6ZFquSTktUIuAbSmqvHYoOm_orUetQCDtNRqWe5OpeRCqcpXxKUQY3Y2xHYpB5coZE8r6trWU3bKKMN7PmYXA6LYpRR94zYxvGHcOuBu14MDN_TQ0_OBbjARrpuILYX0520JCozq2eXAdh8xh679P_IbQfJqew</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quasi‐steady‐state toroidal discharges</title><source>Alma/SFX Local Collection</source><creator>Bevir, M. K. ; Gimblett, C. G. ; Miller, Guthrie</creator><creatorcontrib>Bevir, M. K. ; Gimblett, C. G. ; Miller, Guthrie ; Euratom/UKAEA Fusion Association, Culham Laboratory, Abingdon, Oxon, OX14 3DB, England</creatorcontrib><description>A method for maintaining toroidal current in toroidal plasmas is discussed. The method requires application of suitably phased oscillating toroidal and poloidal voltages to the plasma resulting in a magnetic field configuration with small oscillations around some mean state. In such quasi‐steady states the usual v sec limitation on discharge duration is eliminated. The current drive effect is caused by a nonlinear interaction between the toroidal and poloidal circuits that can be understood in general terms from symmetry considerations. Specific calculations of the effect are made using two models: (1) a zero‐dimensional relaxation model, relevant to the reversed‐field pinch, and (2) a one‐dimensional resistive diffusion model (assuming slab geometry). The results for the relaxation model indicate a useful current drive effect that may be of importance for the reversed‐field‐pinch program.</description><identifier>ISSN: 0031-9171</identifier><identifier>EISSN: 2163-4998</identifier><identifier>DOI: 10.1063/1.864926</identifier><identifier>CODEN: PFLDAS</identifier><language>eng</language><publisher>Woodbury, NY: American Institute of Physics</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; 700101 - Fusion Energy- Plasma Research- Confinement, Heating, &amp; Production ; ANNULAR SPACE ; CONFIGURATION ; CURRENT-DRIVE HEATING ; ELECTRIC HEATING ; EQUILIBRIUM ; Exact sciences and technology ; HEATING ; JOULE HEATING ; Magnetic confinement and equilibrium ; MAGNETIC FIELD CONFIGURATIONS ; NONLINEAR PROBLEMS ; Physics ; Physics of gases, plasmas and electric discharges ; Physics of plasmas and electric discharges ; PINCH EFFECT ; PLASMA ; PLASMA HEATING ; PLASMA SIMULATION ; RESISTANCE HEATING ; REVERSE-FIELD PINCH ; SIMULATION ; SPACE ; STEADY-STATE CONDITIONS ; TOROIDAL CONFIGURATION</subject><ispartof>Phys. Fluids; (United States), 1985-06, Vol.28 (6), p.1826-1836</ispartof><rights>American Institute of Physics</rights><rights>1985 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-4eacd4bca0d5a041166c7feafa8002a99ea6318acb65b2c7fe2403557e7c0433</citedby><cites>FETCH-LOGICAL-c383t-4eacd4bca0d5a041166c7feafa8002a99ea6318acb65b2c7fe2403557e7c0433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=9215185$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/5858040$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bevir, M. K.</creatorcontrib><creatorcontrib>Gimblett, C. G.</creatorcontrib><creatorcontrib>Miller, Guthrie</creatorcontrib><creatorcontrib>Euratom/UKAEA Fusion Association, Culham Laboratory, Abingdon, Oxon, OX14 3DB, England</creatorcontrib><title>Quasi‐steady‐state toroidal discharges</title><title>Phys. Fluids; (United States)</title><description>A method for maintaining toroidal current in toroidal plasmas is discussed. The method requires application of suitably phased oscillating toroidal and poloidal voltages to the plasma resulting in a magnetic field configuration with small oscillations around some mean state. In such quasi‐steady states the usual v sec limitation on discharge duration is eliminated. The current drive effect is caused by a nonlinear interaction between the toroidal and poloidal circuits that can be understood in general terms from symmetry considerations. Specific calculations of the effect are made using two models: (1) a zero‐dimensional relaxation model, relevant to the reversed‐field pinch, and (2) a one‐dimensional resistive diffusion model (assuming slab geometry). The results for the relaxation model indicate a useful current drive effect that may be of importance for the reversed‐field‐pinch program.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>700101 - Fusion Energy- Plasma Research- Confinement, Heating, &amp; Production</subject><subject>ANNULAR SPACE</subject><subject>CONFIGURATION</subject><subject>CURRENT-DRIVE HEATING</subject><subject>ELECTRIC HEATING</subject><subject>EQUILIBRIUM</subject><subject>Exact sciences and technology</subject><subject>HEATING</subject><subject>JOULE HEATING</subject><subject>Magnetic confinement and equilibrium</subject><subject>MAGNETIC FIELD CONFIGURATIONS</subject><subject>NONLINEAR PROBLEMS</subject><subject>Physics</subject><subject>Physics of gases, plasmas and electric discharges</subject><subject>Physics of plasmas and electric discharges</subject><subject>PINCH EFFECT</subject><subject>PLASMA</subject><subject>PLASMA HEATING</subject><subject>PLASMA SIMULATION</subject><subject>RESISTANCE HEATING</subject><subject>REVERSE-FIELD PINCH</subject><subject>SIMULATION</subject><subject>SPACE</subject><subject>STEADY-STATE CONDITIONS</subject><subject>TOROIDAL CONFIGURATION</subject><issn>0031-9171</issn><issn>2163-4998</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1985</creationdate><recordtype>article</recordtype><recordid>eNp10M1KAzEQB_AgCtYq-AhFPKiwNbP52OQoxS8oiNB7mM5mbaTuliQeevMRfEafxK0r3jzNwPz4D_wZOwU-Ba7FNUyNlrbUe2xUghaFtNbssxHnAgoLFRyyo5ReOS8lSDFiV8_vmMLXx2fKHuvtz4LZT3IXu1DjelKHRCuMLz4ds4MG18mf_M4xW9zdLmYPxfzp_nF2My9IGJEL6ZFquSTktUIuAbSmqvHYoOm_orUetQCDtNRqWe5OpeRCqcpXxKUQY3Y2xHYpB5coZE8r6trWU3bKKMN7PmYXA6LYpRR94zYxvGHcOuBu14MDN_TQ0_OBbjARrpuILYX0520JCozq2eXAdh8xh679P_IbQfJqew</recordid><startdate>198506</startdate><enddate>198506</enddate><creator>Bevir, M. K.</creator><creator>Gimblett, C. G.</creator><creator>Miller, Guthrie</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>198506</creationdate><title>Quasi‐steady‐state toroidal discharges</title><author>Bevir, M. K. ; Gimblett, C. G. ; Miller, Guthrie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-4eacd4bca0d5a041166c7feafa8002a99ea6318acb65b2c7fe2403557e7c0433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1985</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>700101 - Fusion Energy- Plasma Research- Confinement, Heating, &amp; Production</topic><topic>ANNULAR SPACE</topic><topic>CONFIGURATION</topic><topic>CURRENT-DRIVE HEATING</topic><topic>ELECTRIC HEATING</topic><topic>EQUILIBRIUM</topic><topic>Exact sciences and technology</topic><topic>HEATING</topic><topic>JOULE HEATING</topic><topic>Magnetic confinement and equilibrium</topic><topic>MAGNETIC FIELD CONFIGURATIONS</topic><topic>NONLINEAR PROBLEMS</topic><topic>Physics</topic><topic>Physics of gases, plasmas and electric discharges</topic><topic>Physics of plasmas and electric discharges</topic><topic>PINCH EFFECT</topic><topic>PLASMA</topic><topic>PLASMA HEATING</topic><topic>PLASMA SIMULATION</topic><topic>RESISTANCE HEATING</topic><topic>REVERSE-FIELD PINCH</topic><topic>SIMULATION</topic><topic>SPACE</topic><topic>STEADY-STATE CONDITIONS</topic><topic>TOROIDAL CONFIGURATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bevir, M. K.</creatorcontrib><creatorcontrib>Gimblett, C. G.</creatorcontrib><creatorcontrib>Miller, Guthrie</creatorcontrib><creatorcontrib>Euratom/UKAEA Fusion Association, Culham Laboratory, Abingdon, Oxon, OX14 3DB, England</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Phys. Fluids; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bevir, M. K.</au><au>Gimblett, C. G.</au><au>Miller, Guthrie</au><aucorp>Euratom/UKAEA Fusion Association, Culham Laboratory, Abingdon, Oxon, OX14 3DB, England</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quasi‐steady‐state toroidal discharges</atitle><jtitle>Phys. Fluids; (United States)</jtitle><date>1985-06</date><risdate>1985</risdate><volume>28</volume><issue>6</issue><spage>1826</spage><epage>1836</epage><pages>1826-1836</pages><issn>0031-9171</issn><eissn>2163-4998</eissn><coden>PFLDAS</coden><abstract>A method for maintaining toroidal current in toroidal plasmas is discussed. The method requires application of suitably phased oscillating toroidal and poloidal voltages to the plasma resulting in a magnetic field configuration with small oscillations around some mean state. In such quasi‐steady states the usual v sec limitation on discharge duration is eliminated. The current drive effect is caused by a nonlinear interaction between the toroidal and poloidal circuits that can be understood in general terms from symmetry considerations. Specific calculations of the effect are made using two models: (1) a zero‐dimensional relaxation model, relevant to the reversed‐field pinch, and (2) a one‐dimensional resistive diffusion model (assuming slab geometry). The results for the relaxation model indicate a useful current drive effect that may be of importance for the reversed‐field‐pinch program.</abstract><cop>Woodbury, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.864926</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9171
ispartof Phys. Fluids; (United States), 1985-06, Vol.28 (6), p.1826-1836
issn 0031-9171
2163-4998
language eng
recordid cdi_pascalfrancis_primary_9215185
source Alma/SFX Local Collection
subjects 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
700101 - Fusion Energy- Plasma Research- Confinement, Heating, & Production
ANNULAR SPACE
CONFIGURATION
CURRENT-DRIVE HEATING
ELECTRIC HEATING
EQUILIBRIUM
Exact sciences and technology
HEATING
JOULE HEATING
Magnetic confinement and equilibrium
MAGNETIC FIELD CONFIGURATIONS
NONLINEAR PROBLEMS
Physics
Physics of gases, plasmas and electric discharges
Physics of plasmas and electric discharges
PINCH EFFECT
PLASMA
PLASMA HEATING
PLASMA SIMULATION
RESISTANCE HEATING
REVERSE-FIELD PINCH
SIMULATION
SPACE
STEADY-STATE CONDITIONS
TOROIDAL CONFIGURATION
title Quasi‐steady‐state toroidal discharges
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T16%3A48%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quasi%E2%80%90steady%E2%80%90state%20toroidal%20discharges&rft.jtitle=Phys.%20Fluids;%20(United%20States)&rft.au=Bevir,%20M.%20K.&rft.aucorp=Euratom/UKAEA%20Fusion%20Association,%20Culham%20Laboratory,%20Abingdon,%20Oxon,%20OX14%203DB,%20England&rft.date=1985-06&rft.volume=28&rft.issue=6&rft.spage=1826&rft.epage=1836&rft.pages=1826-1836&rft.issn=0031-9171&rft.eissn=2163-4998&rft.coden=PFLDAS&rft_id=info:doi/10.1063/1.864926&rft_dat=%3Cscitation_osti_%3Escitation_primary_10_1063_1_864926%3C/scitation_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true