The Interaction of Rotation and Magnetic Field in the Solar System

During the early phases of star formation, torsional Alfven waves propagating along the locally distorted galactic magnetic field can transport away the bulk of the initial angular momentum of a condensation, so enabling it to contract to solar nebula dimensions. Enough primeval magnetic flux may be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Philosophical transactions of the Royal Society of London. Series A: Mathematical and physical sciences 1984-11, Vol.313 (1524), p.19-25
1. Verfasser: Mestel, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 25
container_issue 1524
container_start_page 19
container_title Philosophical transactions of the Royal Society of London. Series A: Mathematical and physical sciences
container_volume 313
creator Mestel, L.
description During the early phases of star formation, torsional Alfven waves propagating along the locally distorted galactic magnetic field can transport away the bulk of the initial angular momentum of a condensation, so enabling it to contract to solar nebula dimensions. Enough primeval magnetic flux may be retained for magnetic redistribution of angular momentum to continue until the proto-Sun reaches the pre-Main Sequence Hayashi phase. A rotating star with a convective envelope has a dynamo-maintained field which brakes the star through coupling to the stellar wind. Observational evidence from young star clusters and from T Tauri stars suggests that the zero-age Main Sequence Sun had about ten times its present angular momentum. The same braking process, scaled up because of the much more powerful T Tauri winds, can explain why the zero-age Sun had lost at least nine-tenths of the centrifugal upper limit, and is more acceptable than the suggestion that the `missing' solar angular momentum has been magnetically fed into the planetary system.
doi_str_mv 10.1098/rsta.1984.0079
format Article
fullrecord <record><control><sourceid>jstor_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_9016869</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>37669</jstor_id><sourcerecordid>37669</sourcerecordid><originalsourceid>FETCH-LOGICAL-c495t-da724cafe4c11b8b03959af1bf9a65222ff8ad66b0b47d41a8c005074720a3933</originalsourceid><addsrcrecordid>eNp9Uk1v1DAUjBBIlMKVA6ccELds_WznwxekUlGoVITUXSRu1otjd73KxovtgJZfj5NUFRWiJz_LM_NmRs6y10BWQERz5kPEFYiGrwipxZPsBHgNBRUVfZpmVvGiJOz78-xFCDtCAKqSnmQfNludXw1Re1TRuiF3Jr9xEecZhy7_greDjlbll1b3XW6HPCbG2vXo8_UxRL1_mT0z2Af96u48zb5dftxcfC6uv366uji_LhQXZSw6rClXaDRXAG3TEiZKgQZaIzBZodSYBruqaknL644DNoqQktS8pgSZYOw0e7foHrz7MeoQ5d4GpfseB-3GICnnpagEJOBqASrvQvDayIO3e_RHCUROVcmpKjlVJaeqEuHtnTIGhb3xOCgb7lmCQNVUEywsMO-OKahTVsej3LnRD-kqb9abcxCM_2TALJQ0iTcMCAfKqfxtD_PWCSATQNoQRi1n2EM3_5pjj239b6Q3C2sXovP3UVhdzUHOlsetvd3-sl7LB9rpckhik8vZH0yM948ypuXKpW80xL950ox9Lw-dYX8AZBTPew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>24459691</pqid></control><display><type>article</type><title>The Interaction of Rotation and Magnetic Field in the Solar System</title><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><creator>Mestel, L.</creator><creatorcontrib>Mestel, L.</creatorcontrib><description>During the early phases of star formation, torsional Alfven waves propagating along the locally distorted galactic magnetic field can transport away the bulk of the initial angular momentum of a condensation, so enabling it to contract to solar nebula dimensions. Enough primeval magnetic flux may be retained for magnetic redistribution of angular momentum to continue until the proto-Sun reaches the pre-Main Sequence Hayashi phase. A rotating star with a convective envelope has a dynamo-maintained field which brakes the star through coupling to the stellar wind. Observational evidence from young star clusters and from T Tauri stars suggests that the zero-age Main Sequence Sun had about ten times its present angular momentum. The same braking process, scaled up because of the much more powerful T Tauri winds, can explain why the zero-age Sun had lost at least nine-tenths of the centrifugal upper limit, and is more acceptable than the suggestion that the `missing' solar angular momentum has been magnetically fed into the planetary system.</description><identifier>ISSN: 1364-503X</identifier><identifier>ISSN: 0080-4614</identifier><identifier>EISSN: 1471-2962</identifier><identifier>EISSN: 2054-0272</identifier><identifier>DOI: 10.1098/rsta.1984.0079</identifier><identifier>CODEN: PTRMAD</identifier><language>eng</language><publisher>London: The Royal Society</publisher><subject>Angular momentum ; Astronomy ; Average linear density ; Braking ; Earth, ocean, space ; Exact sciences and technology ; Magnetic fields ; Magnetic flux ; Mass ; Rotating generators ; Solar physics ; Solar system ; Solar systems ; Sun ; T Tauri stars</subject><ispartof>Philosophical transactions of the Royal Society of London. Series A: Mathematical and physical sciences, 1984-11, Vol.313 (1524), p.19-25</ispartof><rights>Copyright 1984 The Royal Society</rights><rights>Scanned images copyright © 2017, Royal Society</rights><rights>1985 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c495t-da724cafe4c11b8b03959af1bf9a65222ff8ad66b0b47d41a8c005074720a3933</citedby><cites>FETCH-LOGICAL-c495t-da724cafe4c11b8b03959af1bf9a65222ff8ad66b0b47d41a8c005074720a3933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/37669$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/37669$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,778,782,801,830,27907,27908,58000,58004,58233,58237</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=9016869$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mestel, L.</creatorcontrib><title>The Interaction of Rotation and Magnetic Field in the Solar System</title><title>Philosophical transactions of the Royal Society of London. Series A: Mathematical and physical sciences</title><addtitle>Phil. Trans. R. Soc. Lond. A</addtitle><description>During the early phases of star formation, torsional Alfven waves propagating along the locally distorted galactic magnetic field can transport away the bulk of the initial angular momentum of a condensation, so enabling it to contract to solar nebula dimensions. Enough primeval magnetic flux may be retained for magnetic redistribution of angular momentum to continue until the proto-Sun reaches the pre-Main Sequence Hayashi phase. A rotating star with a convective envelope has a dynamo-maintained field which brakes the star through coupling to the stellar wind. Observational evidence from young star clusters and from T Tauri stars suggests that the zero-age Main Sequence Sun had about ten times its present angular momentum. The same braking process, scaled up because of the much more powerful T Tauri winds, can explain why the zero-age Sun had lost at least nine-tenths of the centrifugal upper limit, and is more acceptable than the suggestion that the `missing' solar angular momentum has been magnetically fed into the planetary system.</description><subject>Angular momentum</subject><subject>Astronomy</subject><subject>Average linear density</subject><subject>Braking</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Magnetic fields</subject><subject>Magnetic flux</subject><subject>Mass</subject><subject>Rotating generators</subject><subject>Solar physics</subject><subject>Solar system</subject><subject>Solar systems</subject><subject>Sun</subject><subject>T Tauri stars</subject><issn>1364-503X</issn><issn>0080-4614</issn><issn>1471-2962</issn><issn>2054-0272</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1984</creationdate><recordtype>article</recordtype><recordid>eNp9Uk1v1DAUjBBIlMKVA6ccELds_WznwxekUlGoVITUXSRu1otjd73KxovtgJZfj5NUFRWiJz_LM_NmRs6y10BWQERz5kPEFYiGrwipxZPsBHgNBRUVfZpmVvGiJOz78-xFCDtCAKqSnmQfNludXw1Re1TRuiF3Jr9xEecZhy7_greDjlbll1b3XW6HPCbG2vXo8_UxRL1_mT0z2Af96u48zb5dftxcfC6uv366uji_LhQXZSw6rClXaDRXAG3TEiZKgQZaIzBZodSYBruqaknL644DNoqQktS8pgSZYOw0e7foHrz7MeoQ5d4GpfseB-3GICnnpagEJOBqASrvQvDayIO3e_RHCUROVcmpKjlVJaeqEuHtnTIGhb3xOCgb7lmCQNVUEywsMO-OKahTVsej3LnRD-kqb9abcxCM_2TALJQ0iTcMCAfKqfxtD_PWCSATQNoQRi1n2EM3_5pjj239b6Q3C2sXovP3UVhdzUHOlsetvd3-sl7LB9rpckhik8vZH0yM948ypuXKpW80xL950ox9Lw-dYX8AZBTPew</recordid><startdate>19841127</startdate><enddate>19841127</enddate><creator>Mestel, L.</creator><general>The Royal Society</general><general>Royal Society of London</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19841127</creationdate><title>The Interaction of Rotation and Magnetic Field in the Solar System</title><author>Mestel, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c495t-da724cafe4c11b8b03959af1bf9a65222ff8ad66b0b47d41a8c005074720a3933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1984</creationdate><topic>Angular momentum</topic><topic>Astronomy</topic><topic>Average linear density</topic><topic>Braking</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Magnetic fields</topic><topic>Magnetic flux</topic><topic>Mass</topic><topic>Rotating generators</topic><topic>Solar physics</topic><topic>Solar system</topic><topic>Solar systems</topic><topic>Sun</topic><topic>T Tauri stars</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mestel, L.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical and physical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mestel, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Interaction of Rotation and Magnetic Field in the Solar System</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical and physical sciences</jtitle><stitle>Phil. Trans. R. Soc. Lond. A</stitle><date>1984-11-27</date><risdate>1984</risdate><volume>313</volume><issue>1524</issue><spage>19</spage><epage>25</epage><pages>19-25</pages><issn>1364-503X</issn><issn>0080-4614</issn><eissn>1471-2962</eissn><eissn>2054-0272</eissn><coden>PTRMAD</coden><abstract>During the early phases of star formation, torsional Alfven waves propagating along the locally distorted galactic magnetic field can transport away the bulk of the initial angular momentum of a condensation, so enabling it to contract to solar nebula dimensions. Enough primeval magnetic flux may be retained for magnetic redistribution of angular momentum to continue until the proto-Sun reaches the pre-Main Sequence Hayashi phase. A rotating star with a convective envelope has a dynamo-maintained field which brakes the star through coupling to the stellar wind. Observational evidence from young star clusters and from T Tauri stars suggests that the zero-age Main Sequence Sun had about ten times its present angular momentum. The same braking process, scaled up because of the much more powerful T Tauri winds, can explain why the zero-age Sun had lost at least nine-tenths of the centrifugal upper limit, and is more acceptable than the suggestion that the `missing' solar angular momentum has been magnetically fed into the planetary system.</abstract><cop>London</cop><pub>The Royal Society</pub><doi>10.1098/rsta.1984.0079</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1364-503X
ispartof Philosophical transactions of the Royal Society of London. Series A: Mathematical and physical sciences, 1984-11, Vol.313 (1524), p.19-25
issn 1364-503X
0080-4614
1471-2962
2054-0272
language eng
recordid cdi_pascalfrancis_primary_9016869
source JSTOR Mathematics & Statistics; Jstor Complete Legacy
subjects Angular momentum
Astronomy
Average linear density
Braking
Earth, ocean, space
Exact sciences and technology
Magnetic fields
Magnetic flux
Mass
Rotating generators
Solar physics
Solar system
Solar systems
Sun
T Tauri stars
title The Interaction of Rotation and Magnetic Field in the Solar System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T07%3A47%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Interaction%20of%20Rotation%20and%20Magnetic%20Field%20in%20the%20Solar%20System&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20A:%20Mathematical%20and%20physical%20sciences&rft.au=Mestel,%20L.&rft.date=1984-11-27&rft.volume=313&rft.issue=1524&rft.spage=19&rft.epage=25&rft.pages=19-25&rft.issn=1364-503X&rft.eissn=1471-2962&rft.coden=PTRMAD&rft_id=info:doi/10.1098/rsta.1984.0079&rft_dat=%3Cjstor_pasca%3E37669%3C/jstor_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=24459691&rft_id=info:pmid/&rft_jstor_id=37669&rfr_iscdi=true