The Duality of Electron Spin and Resistivity Relaxation Processes in Sodium and Potassium Metals

Electron spin resonance (e. s. r.) spectra of small particles (ca. 500 nm) of sodium and potassium metals have been recorded over the temperature range 4─100 K. Analysis of the e. s. r. lineshapes yields values of the electron spin-lattice relaxation rate T-11. Both electron spin relaxation and elec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences Mathematical and physical sciences, 1984-10, Vol.395 (1809), p.341-351
Hauptverfasser: Edmonds, R. N., Edwards, Peter Philip
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 351
container_issue 1809
container_start_page 341
container_title Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences
container_volume 395
creator Edmonds, R. N.
Edwards, Peter Philip
description Electron spin resonance (e. s. r.) spectra of small particles (ca. 500 nm) of sodium and potassium metals have been recorded over the temperature range 4─100 K. Analysis of the e. s. r. lineshapes yields values of the electron spin-lattice relaxation rate T-11. Both electron spin relaxation and electrical resistivity in the alkalis are governed by the scattering of high velocity conduction electrons by lattice phonons. The temperature dependence of T-11 bears a striking similarity to that of the electrical resistivity. In both cases the temperature dependence is adequately described by a Bloch-Grüneisen function for temperatures above ½θ, where θ is the Debye temperature. If a Debye model is used to approximate the behaviour of lattice vibrational modes, the derived Debye temperatures from the spin relaxation data are about 20% lower in the particulate samples of sodium and potassium than in the corresponding bulk metals.
doi_str_mv 10.1098/rspa.1984.0104
format Article
fullrecord <record><control><sourceid>jstor_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_8958156</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2397735</jstor_id><sourcerecordid>2397735</sourcerecordid><originalsourceid>FETCH-LOGICAL-c604t-be5775fbd7603de19a0f80da9b228743edcbb9bb281480519f549265b81eacb03</originalsourceid><addsrcrecordid>eNp9kc2P0zAQxSMEEsvClROHHBC3FDu2E_uEVvsBSIsobfm4GcdxqEsaB4-zbPnrcZpVpQqxJ2c0v_dm5iVJnmM0w0jw1x56NcOC0xnCiD5ITjAtcZYLWjyM36SgGUM5fpw8AdgghATj5UnyfbU26cWgWht2qWvSy9bo4F2XLnvbpaqr04UBC8HejMDCtOpWBRv7c--0ATCQRm7pajts9_jcBQUwVh9MUC08TR418THP7t7T5PPV5er8XXb98e3787PrTBeIhqwyrCxZU9VlgUhtsFCo4ahWospzXlJial1VoqpyjilHDIuGUZEXrOLYKF0hcpq8mnx7734NBoLcWtCmbVVn3AAyp5QwWhQRnE2g9g7Am0b23m6V30mM5BikHIOUY5ByDDIKXt45K9CqbbzqtIWDiscgMRt9yYR5t4uHOm1N2MmNG3wXy_-bw32qxXJ-hkUhbohgFnMkJOIEo4JQxOUf2-_tRkBGQFqAwcg9djzm36kvpqkbCM4fTsmJKEvCYjub2vHHm9tDW_mfsihJyeSXaES-feJfl1crSSKPJ35tf6x_W2_k0TWx6D2o_Yr75QjFUfPmXs24sHZdMF04EspmaFvZ1w35C1tx67U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>24435466</pqid></control><display><type>article</type><title>The Duality of Electron Spin and Resistivity Relaxation Processes in Sodium and Potassium Metals</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Edmonds, R. N. ; Edwards, Peter Philip</creator><creatorcontrib>Edmonds, R. N. ; Edwards, Peter Philip</creatorcontrib><description>Electron spin resonance (e. s. r.) spectra of small particles (ca. 500 nm) of sodium and potassium metals have been recorded over the temperature range 4─100 K. Analysis of the e. s. r. lineshapes yields values of the electron spin-lattice relaxation rate T-11. Both electron spin relaxation and electrical resistivity in the alkalis are governed by the scattering of high velocity conduction electrons by lattice phonons. The temperature dependence of T-11 bears a striking similarity to that of the electrical resistivity. In both cases the temperature dependence is adequately described by a Bloch-Grüneisen function for temperatures above ½θ, where θ is the Debye temperature. If a Debye model is used to approximate the behaviour of lattice vibrational modes, the derived Debye temperatures from the spin relaxation data are about 20% lower in the particulate samples of sodium and potassium than in the corresponding bulk metals.</description><identifier>ISSN: 1364-5021</identifier><identifier>ISSN: 0080-4630</identifier><identifier>EISSN: 1471-2946</identifier><identifier>EISSN: 2053-9169</identifier><identifier>DOI: 10.1098/rspa.1984.0104</identifier><identifier>CODEN: PRLAAZ</identifier><language>eng</language><publisher>London: The Royal Society</publisher><subject>Colloids ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Conduction electrons ; Cross-disciplinary physics: materials science; rheology ; Electrical resistivity ; Electron paramagnetic resonance and relaxation ; Electron spin ; Exact sciences and technology ; Low temperature ; Magnetic properties and materials ; Magnetic resonances and relaxations in condensed matter, mössbauer effect ; Materials science ; Metal particles ; Metals, semimetals and alloys ; Other topics in magnetic properties and materials ; Phonons ; Physics ; Potassium ; Sodium ; Specific heat ; Specific materials ; Spin temperature</subject><ispartof>Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences, 1984-10, Vol.395 (1809), p.341-351</ispartof><rights>Copyright 1984 The Royal Society</rights><rights>Scanned images copyright © 2017, Royal Society</rights><rights>1985 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c604t-be5775fbd7603de19a0f80da9b228743edcbb9bb281480519f549265b81eacb03</citedby><cites>FETCH-LOGICAL-c604t-be5775fbd7603de19a0f80da9b228743edcbb9bb281480519f549265b81eacb03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2397735$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2397735$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27924,27925,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=8958156$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Edmonds, R. N.</creatorcontrib><creatorcontrib>Edwards, Peter Philip</creatorcontrib><title>The Duality of Electron Spin and Resistivity Relaxation Processes in Sodium and Potassium Metals</title><title>Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences</title><addtitle>Proc. R. Soc. Lond. A</addtitle><addtitle>Proc. R. Soc. Lond. A</addtitle><description>Electron spin resonance (e. s. r.) spectra of small particles (ca. 500 nm) of sodium and potassium metals have been recorded over the temperature range 4─100 K. Analysis of the e. s. r. lineshapes yields values of the electron spin-lattice relaxation rate T-11. Both electron spin relaxation and electrical resistivity in the alkalis are governed by the scattering of high velocity conduction electrons by lattice phonons. The temperature dependence of T-11 bears a striking similarity to that of the electrical resistivity. In both cases the temperature dependence is adequately described by a Bloch-Grüneisen function for temperatures above ½θ, where θ is the Debye temperature. If a Debye model is used to approximate the behaviour of lattice vibrational modes, the derived Debye temperatures from the spin relaxation data are about 20% lower in the particulate samples of sodium and potassium than in the corresponding bulk metals.</description><subject>Colloids</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Conduction electrons</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electrical resistivity</subject><subject>Electron paramagnetic resonance and relaxation</subject><subject>Electron spin</subject><subject>Exact sciences and technology</subject><subject>Low temperature</subject><subject>Magnetic properties and materials</subject><subject>Magnetic resonances and relaxations in condensed matter, mössbauer effect</subject><subject>Materials science</subject><subject>Metal particles</subject><subject>Metals, semimetals and alloys</subject><subject>Other topics in magnetic properties and materials</subject><subject>Phonons</subject><subject>Physics</subject><subject>Potassium</subject><subject>Sodium</subject><subject>Specific heat</subject><subject>Specific materials</subject><subject>Spin temperature</subject><issn>1364-5021</issn><issn>0080-4630</issn><issn>1471-2946</issn><issn>2053-9169</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1984</creationdate><recordtype>article</recordtype><recordid>eNp9kc2P0zAQxSMEEsvClROHHBC3FDu2E_uEVvsBSIsobfm4GcdxqEsaB4-zbPnrcZpVpQqxJ2c0v_dm5iVJnmM0w0jw1x56NcOC0xnCiD5ITjAtcZYLWjyM36SgGUM5fpw8AdgghATj5UnyfbU26cWgWht2qWvSy9bo4F2XLnvbpaqr04UBC8HejMDCtOpWBRv7c--0ATCQRm7pajts9_jcBQUwVh9MUC08TR418THP7t7T5PPV5er8XXb98e3787PrTBeIhqwyrCxZU9VlgUhtsFCo4ahWospzXlJial1VoqpyjilHDIuGUZEXrOLYKF0hcpq8mnx7734NBoLcWtCmbVVn3AAyp5QwWhQRnE2g9g7Am0b23m6V30mM5BikHIOUY5ByDDIKXt45K9CqbbzqtIWDiscgMRt9yYR5t4uHOm1N2MmNG3wXy_-bw32qxXJ-hkUhbohgFnMkJOIEo4JQxOUf2-_tRkBGQFqAwcg9djzm36kvpqkbCM4fTsmJKEvCYjub2vHHm9tDW_mfsihJyeSXaES-feJfl1crSSKPJ35tf6x_W2_k0TWx6D2o_Yr75QjFUfPmXs24sHZdMF04EspmaFvZ1w35C1tx67U</recordid><startdate>19841008</startdate><enddate>19841008</enddate><creator>Edmonds, R. N.</creator><creator>Edwards, Peter Philip</creator><general>The Royal Society</general><general>Royal society of London</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>19841008</creationdate><title>The Duality of Electron Spin and Resistivity Relaxation Processes in Sodium and Potassium Metals</title><author>Edmonds, R. N. ; Edwards, Peter Philip</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c604t-be5775fbd7603de19a0f80da9b228743edcbb9bb281480519f549265b81eacb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1984</creationdate><topic>Colloids</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Conduction electrons</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electrical resistivity</topic><topic>Electron paramagnetic resonance and relaxation</topic><topic>Electron spin</topic><topic>Exact sciences and technology</topic><topic>Low temperature</topic><topic>Magnetic properties and materials</topic><topic>Magnetic resonances and relaxations in condensed matter, mössbauer effect</topic><topic>Materials science</topic><topic>Metal particles</topic><topic>Metals, semimetals and alloys</topic><topic>Other topics in magnetic properties and materials</topic><topic>Phonons</topic><topic>Physics</topic><topic>Potassium</topic><topic>Sodium</topic><topic>Specific heat</topic><topic>Specific materials</topic><topic>Spin temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Edmonds, R. N.</creatorcontrib><creatorcontrib>Edwards, Peter Philip</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Edmonds, R. N.</au><au>Edwards, Peter Philip</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Duality of Electron Spin and Resistivity Relaxation Processes in Sodium and Potassium Metals</atitle><jtitle>Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences</jtitle><stitle>Proc. R. Soc. Lond. A</stitle><addtitle>Proc. R. Soc. Lond. A</addtitle><date>1984-10-08</date><risdate>1984</risdate><volume>395</volume><issue>1809</issue><spage>341</spage><epage>351</epage><pages>341-351</pages><issn>1364-5021</issn><issn>0080-4630</issn><eissn>1471-2946</eissn><eissn>2053-9169</eissn><coden>PRLAAZ</coden><abstract>Electron spin resonance (e. s. r.) spectra of small particles (ca. 500 nm) of sodium and potassium metals have been recorded over the temperature range 4─100 K. Analysis of the e. s. r. lineshapes yields values of the electron spin-lattice relaxation rate T-11. Both electron spin relaxation and electrical resistivity in the alkalis are governed by the scattering of high velocity conduction electrons by lattice phonons. The temperature dependence of T-11 bears a striking similarity to that of the electrical resistivity. In both cases the temperature dependence is adequately described by a Bloch-Grüneisen function for temperatures above ½θ, where θ is the Debye temperature. If a Debye model is used to approximate the behaviour of lattice vibrational modes, the derived Debye temperatures from the spin relaxation data are about 20% lower in the particulate samples of sodium and potassium than in the corresponding bulk metals.</abstract><cop>London</cop><pub>The Royal Society</pub><doi>10.1098/rspa.1984.0104</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1364-5021
ispartof Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences, 1984-10, Vol.395 (1809), p.341-351
issn 1364-5021
0080-4630
1471-2946
2053-9169
language eng
recordid cdi_pascalfrancis_primary_8958156
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing
subjects Colloids
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Conduction electrons
Cross-disciplinary physics: materials science
rheology
Electrical resistivity
Electron paramagnetic resonance and relaxation
Electron spin
Exact sciences and technology
Low temperature
Magnetic properties and materials
Magnetic resonances and relaxations in condensed matter, mössbauer effect
Materials science
Metal particles
Metals, semimetals and alloys
Other topics in magnetic properties and materials
Phonons
Physics
Potassium
Sodium
Specific heat
Specific materials
Spin temperature
title The Duality of Electron Spin and Resistivity Relaxation Processes in Sodium and Potassium Metals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A15%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Duality%20of%20Electron%20Spin%20and%20Resistivity%20Relaxation%20Processes%20in%20Sodium%20and%20Potassium%20Metals&rft.jtitle=Proceedings%20of%20the%20Royal%20Society%20of%20London.%20Series%20A,%20Mathematical%20and%20physical%20sciences&rft.au=Edmonds,%20R.%20N.&rft.date=1984-10-08&rft.volume=395&rft.issue=1809&rft.spage=341&rft.epage=351&rft.pages=341-351&rft.issn=1364-5021&rft.eissn=1471-2946&rft.coden=PRLAAZ&rft_id=info:doi/10.1098/rspa.1984.0104&rft_dat=%3Cjstor_pasca%3E2397735%3C/jstor_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=24435466&rft_id=info:pmid/&rft_jstor_id=2397735&rfr_iscdi=true