The Duality of Electron Spin and Resistivity Relaxation Processes in Sodium and Potassium Metals
Electron spin resonance (e. s. r.) spectra of small particles (ca. 500 nm) of sodium and potassium metals have been recorded over the temperature range 4─100 K. Analysis of the e. s. r. lineshapes yields values of the electron spin-lattice relaxation rate T-11. Both electron spin relaxation and elec...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences Mathematical and physical sciences, 1984-10, Vol.395 (1809), p.341-351 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 351 |
---|---|
container_issue | 1809 |
container_start_page | 341 |
container_title | Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences |
container_volume | 395 |
creator | Edmonds, R. N. Edwards, Peter Philip |
description | Electron spin resonance (e. s. r.) spectra of small particles (ca. 500 nm) of sodium and potassium metals have been recorded over the temperature range 4─100 K. Analysis of the e. s. r. lineshapes yields values of the electron spin-lattice relaxation rate T-11. Both electron spin relaxation and electrical resistivity in the alkalis are governed by the scattering of high velocity conduction electrons by lattice phonons. The temperature dependence of T-11 bears a striking similarity to that of the electrical resistivity. In both cases the temperature dependence is adequately described by a Bloch-Grüneisen function for temperatures above ½θ, where θ is the Debye temperature. If a Debye model is used to approximate the behaviour of lattice vibrational modes, the derived Debye temperatures from the spin relaxation data are about 20% lower in the particulate samples of sodium and potassium than in the corresponding bulk metals. |
doi_str_mv | 10.1098/rspa.1984.0104 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_8958156</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2397735</jstor_id><sourcerecordid>2397735</sourcerecordid><originalsourceid>FETCH-LOGICAL-c604t-be5775fbd7603de19a0f80da9b228743edcbb9bb281480519f549265b81eacb03</originalsourceid><addsrcrecordid>eNp9kc2P0zAQxSMEEsvClROHHBC3FDu2E_uEVvsBSIsobfm4GcdxqEsaB4-zbPnrcZpVpQqxJ2c0v_dm5iVJnmM0w0jw1x56NcOC0xnCiD5ITjAtcZYLWjyM36SgGUM5fpw8AdgghATj5UnyfbU26cWgWht2qWvSy9bo4F2XLnvbpaqr04UBC8HejMDCtOpWBRv7c--0ATCQRm7pajts9_jcBQUwVh9MUC08TR418THP7t7T5PPV5er8XXb98e3787PrTBeIhqwyrCxZU9VlgUhtsFCo4ahWospzXlJial1VoqpyjilHDIuGUZEXrOLYKF0hcpq8mnx7734NBoLcWtCmbVVn3AAyp5QwWhQRnE2g9g7Am0b23m6V30mM5BikHIOUY5ByDDIKXt45K9CqbbzqtIWDiscgMRt9yYR5t4uHOm1N2MmNG3wXy_-bw32qxXJ-hkUhbohgFnMkJOIEo4JQxOUf2-_tRkBGQFqAwcg9djzm36kvpqkbCM4fTsmJKEvCYjub2vHHm9tDW_mfsihJyeSXaES-feJfl1crSSKPJ35tf6x_W2_k0TWx6D2o_Yr75QjFUfPmXs24sHZdMF04EspmaFvZ1w35C1tx67U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>24435466</pqid></control><display><type>article</type><title>The Duality of Electron Spin and Resistivity Relaxation Processes in Sodium and Potassium Metals</title><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Edmonds, R. N. ; Edwards, Peter Philip</creator><creatorcontrib>Edmonds, R. N. ; Edwards, Peter Philip</creatorcontrib><description>Electron spin resonance (e. s. r.) spectra of small particles (ca. 500 nm) of sodium and potassium metals have been recorded over the temperature range 4─100 K. Analysis of the e. s. r. lineshapes yields values of the electron spin-lattice relaxation rate T-11. Both electron spin relaxation and electrical resistivity in the alkalis are governed by the scattering of high velocity conduction electrons by lattice phonons. The temperature dependence of T-11 bears a striking similarity to that of the electrical resistivity. In both cases the temperature dependence is adequately described by a Bloch-Grüneisen function for temperatures above ½θ, where θ is the Debye temperature. If a Debye model is used to approximate the behaviour of lattice vibrational modes, the derived Debye temperatures from the spin relaxation data are about 20% lower in the particulate samples of sodium and potassium than in the corresponding bulk metals.</description><identifier>ISSN: 1364-5021</identifier><identifier>ISSN: 0080-4630</identifier><identifier>EISSN: 1471-2946</identifier><identifier>EISSN: 2053-9169</identifier><identifier>DOI: 10.1098/rspa.1984.0104</identifier><identifier>CODEN: PRLAAZ</identifier><language>eng</language><publisher>London: The Royal Society</publisher><subject>Colloids ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Conduction electrons ; Cross-disciplinary physics: materials science; rheology ; Electrical resistivity ; Electron paramagnetic resonance and relaxation ; Electron spin ; Exact sciences and technology ; Low temperature ; Magnetic properties and materials ; Magnetic resonances and relaxations in condensed matter, mössbauer effect ; Materials science ; Metal particles ; Metals, semimetals and alloys ; Other topics in magnetic properties and materials ; Phonons ; Physics ; Potassium ; Sodium ; Specific heat ; Specific materials ; Spin temperature</subject><ispartof>Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences, 1984-10, Vol.395 (1809), p.341-351</ispartof><rights>Copyright 1984 The Royal Society</rights><rights>Scanned images copyright © 2017, Royal Society</rights><rights>1985 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c604t-be5775fbd7603de19a0f80da9b228743edcbb9bb281480519f549265b81eacb03</citedby><cites>FETCH-LOGICAL-c604t-be5775fbd7603de19a0f80da9b228743edcbb9bb281480519f549265b81eacb03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2397735$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2397735$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27924,27925,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=8958156$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Edmonds, R. N.</creatorcontrib><creatorcontrib>Edwards, Peter Philip</creatorcontrib><title>The Duality of Electron Spin and Resistivity Relaxation Processes in Sodium and Potassium Metals</title><title>Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences</title><addtitle>Proc. R. Soc. Lond. A</addtitle><addtitle>Proc. R. Soc. Lond. A</addtitle><description>Electron spin resonance (e. s. r.) spectra of small particles (ca. 500 nm) of sodium and potassium metals have been recorded over the temperature range 4─100 K. Analysis of the e. s. r. lineshapes yields values of the electron spin-lattice relaxation rate T-11. Both electron spin relaxation and electrical resistivity in the alkalis are governed by the scattering of high velocity conduction electrons by lattice phonons. The temperature dependence of T-11 bears a striking similarity to that of the electrical resistivity. In both cases the temperature dependence is adequately described by a Bloch-Grüneisen function for temperatures above ½θ, where θ is the Debye temperature. If a Debye model is used to approximate the behaviour of lattice vibrational modes, the derived Debye temperatures from the spin relaxation data are about 20% lower in the particulate samples of sodium and potassium than in the corresponding bulk metals.</description><subject>Colloids</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Conduction electrons</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electrical resistivity</subject><subject>Electron paramagnetic resonance and relaxation</subject><subject>Electron spin</subject><subject>Exact sciences and technology</subject><subject>Low temperature</subject><subject>Magnetic properties and materials</subject><subject>Magnetic resonances and relaxations in condensed matter, mössbauer effect</subject><subject>Materials science</subject><subject>Metal particles</subject><subject>Metals, semimetals and alloys</subject><subject>Other topics in magnetic properties and materials</subject><subject>Phonons</subject><subject>Physics</subject><subject>Potassium</subject><subject>Sodium</subject><subject>Specific heat</subject><subject>Specific materials</subject><subject>Spin temperature</subject><issn>1364-5021</issn><issn>0080-4630</issn><issn>1471-2946</issn><issn>2053-9169</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1984</creationdate><recordtype>article</recordtype><recordid>eNp9kc2P0zAQxSMEEsvClROHHBC3FDu2E_uEVvsBSIsobfm4GcdxqEsaB4-zbPnrcZpVpQqxJ2c0v_dm5iVJnmM0w0jw1x56NcOC0xnCiD5ITjAtcZYLWjyM36SgGUM5fpw8AdgghATj5UnyfbU26cWgWht2qWvSy9bo4F2XLnvbpaqr04UBC8HejMDCtOpWBRv7c--0ATCQRm7pajts9_jcBQUwVh9MUC08TR418THP7t7T5PPV5er8XXb98e3787PrTBeIhqwyrCxZU9VlgUhtsFCo4ahWospzXlJial1VoqpyjilHDIuGUZEXrOLYKF0hcpq8mnx7734NBoLcWtCmbVVn3AAyp5QwWhQRnE2g9g7Am0b23m6V30mM5BikHIOUY5ByDDIKXt45K9CqbbzqtIWDiscgMRt9yYR5t4uHOm1N2MmNG3wXy_-bw32qxXJ-hkUhbohgFnMkJOIEo4JQxOUf2-_tRkBGQFqAwcg9djzm36kvpqkbCM4fTsmJKEvCYjub2vHHm9tDW_mfsihJyeSXaES-feJfl1crSSKPJ35tf6x_W2_k0TWx6D2o_Yr75QjFUfPmXs24sHZdMF04EspmaFvZ1w35C1tx67U</recordid><startdate>19841008</startdate><enddate>19841008</enddate><creator>Edmonds, R. N.</creator><creator>Edwards, Peter Philip</creator><general>The Royal Society</general><general>Royal society of London</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>19841008</creationdate><title>The Duality of Electron Spin and Resistivity Relaxation Processes in Sodium and Potassium Metals</title><author>Edmonds, R. N. ; Edwards, Peter Philip</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c604t-be5775fbd7603de19a0f80da9b228743edcbb9bb281480519f549265b81eacb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1984</creationdate><topic>Colloids</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Conduction electrons</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electrical resistivity</topic><topic>Electron paramagnetic resonance and relaxation</topic><topic>Electron spin</topic><topic>Exact sciences and technology</topic><topic>Low temperature</topic><topic>Magnetic properties and materials</topic><topic>Magnetic resonances and relaxations in condensed matter, mössbauer effect</topic><topic>Materials science</topic><topic>Metal particles</topic><topic>Metals, semimetals and alloys</topic><topic>Other topics in magnetic properties and materials</topic><topic>Phonons</topic><topic>Physics</topic><topic>Potassium</topic><topic>Sodium</topic><topic>Specific heat</topic><topic>Specific materials</topic><topic>Spin temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Edmonds, R. N.</creatorcontrib><creatorcontrib>Edwards, Peter Philip</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Edmonds, R. N.</au><au>Edwards, Peter Philip</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Duality of Electron Spin and Resistivity Relaxation Processes in Sodium and Potassium Metals</atitle><jtitle>Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences</jtitle><stitle>Proc. R. Soc. Lond. A</stitle><addtitle>Proc. R. Soc. Lond. A</addtitle><date>1984-10-08</date><risdate>1984</risdate><volume>395</volume><issue>1809</issue><spage>341</spage><epage>351</epage><pages>341-351</pages><issn>1364-5021</issn><issn>0080-4630</issn><eissn>1471-2946</eissn><eissn>2053-9169</eissn><coden>PRLAAZ</coden><abstract>Electron spin resonance (e. s. r.) spectra of small particles (ca. 500 nm) of sodium and potassium metals have been recorded over the temperature range 4─100 K. Analysis of the e. s. r. lineshapes yields values of the electron spin-lattice relaxation rate T-11. Both electron spin relaxation and electrical resistivity in the alkalis are governed by the scattering of high velocity conduction electrons by lattice phonons. The temperature dependence of T-11 bears a striking similarity to that of the electrical resistivity. In both cases the temperature dependence is adequately described by a Bloch-Grüneisen function for temperatures above ½θ, where θ is the Debye temperature. If a Debye model is used to approximate the behaviour of lattice vibrational modes, the derived Debye temperatures from the spin relaxation data are about 20% lower in the particulate samples of sodium and potassium than in the corresponding bulk metals.</abstract><cop>London</cop><pub>The Royal Society</pub><doi>10.1098/rspa.1984.0104</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-5021 |
ispartof | Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences, 1984-10, Vol.395 (1809), p.341-351 |
issn | 1364-5021 0080-4630 1471-2946 2053-9169 |
language | eng |
recordid | cdi_pascalfrancis_primary_8958156 |
source | JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing |
subjects | Colloids Condensed matter: electronic structure, electrical, magnetic, and optical properties Conduction electrons Cross-disciplinary physics: materials science rheology Electrical resistivity Electron paramagnetic resonance and relaxation Electron spin Exact sciences and technology Low temperature Magnetic properties and materials Magnetic resonances and relaxations in condensed matter, mössbauer effect Materials science Metal particles Metals, semimetals and alloys Other topics in magnetic properties and materials Phonons Physics Potassium Sodium Specific heat Specific materials Spin temperature |
title | The Duality of Electron Spin and Resistivity Relaxation Processes in Sodium and Potassium Metals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A15%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Duality%20of%20Electron%20Spin%20and%20Resistivity%20Relaxation%20Processes%20in%20Sodium%20and%20Potassium%20Metals&rft.jtitle=Proceedings%20of%20the%20Royal%20Society%20of%20London.%20Series%20A,%20Mathematical%20and%20physical%20sciences&rft.au=Edmonds,%20R.%20N.&rft.date=1984-10-08&rft.volume=395&rft.issue=1809&rft.spage=341&rft.epage=351&rft.pages=341-351&rft.issn=1364-5021&rft.eissn=1471-2946&rft.coden=PRLAAZ&rft_id=info:doi/10.1098/rspa.1984.0104&rft_dat=%3Cjstor_pasca%3E2397735%3C/jstor_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=24435466&rft_id=info:pmid/&rft_jstor_id=2397735&rfr_iscdi=true |