Electromagnetic scattering from axially inhomogeneous bodies of revolution

The electromagnetic scattering from partially or totally penetrable bodies of revolution (BOR) is formulated in terms of coupled Fredholm integral equations, solved by the method of moments (MM). The scatterers can have axial inhomogeneities, formed by dissimilar dielectric materials. The case of co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:I.R.E. transactions on antennas and propagation 1984-08, Vol.32 (8), p.797-806
Hauptverfasser: Medgyesi-Mitschang, L., Putnam, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The electromagnetic scattering from partially or totally penetrable bodies of revolution (BOR) is formulated in terms of coupled Fredholm integral equations, solved by the method of moments (MM). The scatterers can have axial inhomogeneities, formed by dissimilar dielectric materials. The case of conducting bodies with axially discontinuous coatings is also treated. The penetrable regions can be lossy, characterized by complex permeability and permittivity. Boundary conditions are rigorously treated everywhere including the intersection of the various regions. The solutions are expressed in terms of combinations of two special matrices arising from the Galerkin technique. These solutions are implemented numerically for a class of generic axially inhomogeneous BOR scatterers. Numerical results given for various conducting/dielectric cylinder combinations using this formulation are compared with experimental data. For special cases where comparisons are possible, the present analysis replicates the results of the Mie theory.
ISSN:0018-926X
0096-1973
1558-2221
DOI:10.1109/TAP.1984.1143430