Proposal of an optical modulator based on resonant tunneling and intersubband transitions

We propose and analyze an optical modulator based on intersubband transitions. The absorption is modulated by modulating the carrier density in the ground state of a quantum well (QW). Electrons are injected resonantly into this subband from a QW reservoir subband through a single barrier. When the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of quantum electronics 2001-02, Vol.37 (2), p.224-230
Hauptverfasser: Holmstrom, P., Thylen, L., Ukenberg, U.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 230
container_issue 2
container_start_page 224
container_title IEEE journal of quantum electronics
container_volume 37
creator Holmstrom, P.
Thylen, L.
Ukenberg, U.
description We propose and analyze an optical modulator based on intersubband transitions. The absorption is modulated by modulating the carrier density in the ground state of a quantum well (QW). Electrons are injected resonantly into this subband from a QW reservoir subband through a single barrier. When the two states are tuned out of resonance, the electrons are rapidly evacuated by means of the optical field. A waveguide based on surface plasmons is assumed in order to have a high optical mode overlap. Calculations are performed for a cascaded structure with four periods, assuming InGaAs-InIAs QWs. The considered modulator structure operates at /spl lambda/=6.0 /spl mu/m and is RC limited to 27 GHz. An extinction ratio of 4 is obtained with a low applied voltage of 0.6 V. At larger applied voltages, the absorption is bistable. Absorption at shorter/longer wavelengths can be obtained by using materials with a larger/smaller conduction band offset. We also assess resonant tunneling from a 2-D electron gas reservoir into an array of quantum dots and compare it to the 2-D-2-D tunneling resonance.
doi_str_mv 10.1109/3.903072
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_882688</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>903072</ieee_id><sourcerecordid>28502453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-d478f0bd15326500b8dc0ee6af179145420f347d62e79aac740ea41d99f124073</originalsourceid><addsrcrecordid>eNqN0c2L1TAQAPAgCj5XwbOnoqAe7Dr5apLjsn7Cgh5U8BTSdrpm7Uu6SYr435tHH-_gQTyFIb_MTGYIeUzhnFIwr_m5AQ6K3SE7KqVuqaL8LtkBUN0aatR98iDnmxoKoWFHvn9OcYnZzU2cGheauBQ_1Ggfx3V2JaamdxnHJoYmYY7BhdKUNQScfbiuD8bGh4Ipr31_CEpyIfviY8gPyb3JzRkfHc8z8vXd2y-XH9qrT-8_Xl5ctYPgUNpRKD1BP1LJWScBej0OgNi5iSpDhRQMJi7U2DFUxrlBCUAn6GjMRJkAxc_Iqy1v_oXL2tsl-b1Lv2103r7x3y5sTNf2Z_lhGXDdVf5i40uKtyvmYvc-DzjPLmBcs601OwFc8Sqf_1MyLYEJ-R-w09pIdmj16V_wJq4p1OlYrYXqRCdZRS83NKSYc8Lp9CMK9rBiy-224kqfHfO5XJc21eEPPp-81ofKVT3ZlEfE0-UxxR-3gKyN</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884764652</pqid></control><display><type>article</type><title>Proposal of an optical modulator based on resonant tunneling and intersubband transitions</title><source>IEEE Electronic Library (IEL)</source><creator>Holmstrom, P. ; Thylen, L. ; Ukenberg, U.</creator><creatorcontrib>Holmstrom, P. ; Thylen, L. ; Ukenberg, U.</creatorcontrib><description>We propose and analyze an optical modulator based on intersubband transitions. The absorption is modulated by modulating the carrier density in the ground state of a quantum well (QW). Electrons are injected resonantly into this subband from a QW reservoir subband through a single barrier. When the two states are tuned out of resonance, the electrons are rapidly evacuated by means of the optical field. A waveguide based on surface plasmons is assumed in order to have a high optical mode overlap. Calculations are performed for a cascaded structure with four periods, assuming InGaAs-InIAs QWs. The considered modulator structure operates at /spl lambda/=6.0 /spl mu/m and is RC limited to 27 GHz. An extinction ratio of 4 is obtained with a low applied voltage of 0.6 V. At larger applied voltages, the absorption is bistable. Absorption at shorter/longer wavelengths can be obtained by using materials with a larger/smaller conduction band offset. We also assess resonant tunneling from a 2-D electron gas reservoir into an array of quantum dots and compare it to the 2-D-2-D tunneling resonance.</description><identifier>ISSN: 0018-9197</identifier><identifier>ISSN: 1558-1713</identifier><identifier>EISSN: 1558-1713</identifier><identifier>DOI: 10.1109/3.903072</identifier><identifier>CODEN: IEJQA7</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Absorption ; Arrays ; Carrier density ; Charge carrier density ; devices ; Electric potential ; Electron optics ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; infrared modulator ; Intersubband transitions ; light modulators ; mid-IR ; Modulators ; nonparabolicity ; Optical bistability ; Optical elements, devices, and systems ; Optical modulation ; Optical processors, correlators, and modulators ; Optical waveguides ; Optics ; Physics ; Proposals ; Quantum dots ; quantum wells ; Reservoirs ; Resonance ; Resonant tunneling ; Resonant tunneling devices ; shift ; spectroscopy ; stark ; Voltage</subject><ispartof>IEEE journal of quantum electronics, 2001-02, Vol.37 (2), p.224-230</ispartof><rights>2001 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-d478f0bd15326500b8dc0ee6af179145420f347d62e79aac740ea41d99f124073</citedby><cites>FETCH-LOGICAL-c430t-d478f0bd15326500b8dc0ee6af179145420f347d62e79aac740ea41d99f124073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/903072$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/903072$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=882688$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-20386$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Holmstrom, P.</creatorcontrib><creatorcontrib>Thylen, L.</creatorcontrib><creatorcontrib>Ukenberg, U.</creatorcontrib><title>Proposal of an optical modulator based on resonant tunneling and intersubband transitions</title><title>IEEE journal of quantum electronics</title><addtitle>JQE</addtitle><description>We propose and analyze an optical modulator based on intersubband transitions. The absorption is modulated by modulating the carrier density in the ground state of a quantum well (QW). Electrons are injected resonantly into this subband from a QW reservoir subband through a single barrier. When the two states are tuned out of resonance, the electrons are rapidly evacuated by means of the optical field. A waveguide based on surface plasmons is assumed in order to have a high optical mode overlap. Calculations are performed for a cascaded structure with four periods, assuming InGaAs-InIAs QWs. The considered modulator structure operates at /spl lambda/=6.0 /spl mu/m and is RC limited to 27 GHz. An extinction ratio of 4 is obtained with a low applied voltage of 0.6 V. At larger applied voltages, the absorption is bistable. Absorption at shorter/longer wavelengths can be obtained by using materials with a larger/smaller conduction band offset. We also assess resonant tunneling from a 2-D electron gas reservoir into an array of quantum dots and compare it to the 2-D-2-D tunneling resonance.</description><subject>Absorption</subject><subject>Arrays</subject><subject>Carrier density</subject><subject>Charge carrier density</subject><subject>devices</subject><subject>Electric potential</subject><subject>Electron optics</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>infrared modulator</subject><subject>Intersubband transitions</subject><subject>light modulators</subject><subject>mid-IR</subject><subject>Modulators</subject><subject>nonparabolicity</subject><subject>Optical bistability</subject><subject>Optical elements, devices, and systems</subject><subject>Optical modulation</subject><subject>Optical processors, correlators, and modulators</subject><subject>Optical waveguides</subject><subject>Optics</subject><subject>Physics</subject><subject>Proposals</subject><subject>Quantum dots</subject><subject>quantum wells</subject><subject>Reservoirs</subject><subject>Resonance</subject><subject>Resonant tunneling</subject><subject>Resonant tunneling devices</subject><subject>shift</subject><subject>spectroscopy</subject><subject>stark</subject><subject>Voltage</subject><issn>0018-9197</issn><issn>1558-1713</issn><issn>1558-1713</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqN0c2L1TAQAPAgCj5XwbOnoqAe7Dr5apLjsn7Cgh5U8BTSdrpm7Uu6SYr435tHH-_gQTyFIb_MTGYIeUzhnFIwr_m5AQ6K3SE7KqVuqaL8LtkBUN0aatR98iDnmxoKoWFHvn9OcYnZzU2cGheauBQ_1Ggfx3V2JaamdxnHJoYmYY7BhdKUNQScfbiuD8bGh4Ipr31_CEpyIfviY8gPyb3JzRkfHc8z8vXd2y-XH9qrT-8_Xl5ctYPgUNpRKD1BP1LJWScBej0OgNi5iSpDhRQMJi7U2DFUxrlBCUAn6GjMRJkAxc_Iqy1v_oXL2tsl-b1Lv2103r7x3y5sTNf2Z_lhGXDdVf5i40uKtyvmYvc-DzjPLmBcs601OwFc8Sqf_1MyLYEJ-R-w09pIdmj16V_wJq4p1OlYrYXqRCdZRS83NKSYc8Lp9CMK9rBiy-224kqfHfO5XJc21eEPPp-81ofKVT3ZlEfE0-UxxR-3gKyN</recordid><startdate>20010201</startdate><enddate>20010201</enddate><creator>Holmstrom, P.</creator><creator>Thylen, L.</creator><creator>Ukenberg, U.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>H8D</scope><scope>F28</scope><scope>FR3</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8V</scope></search><sort><creationdate>20010201</creationdate><title>Proposal of an optical modulator based on resonant tunneling and intersubband transitions</title><author>Holmstrom, P. ; Thylen, L. ; Ukenberg, U.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-d478f0bd15326500b8dc0ee6af179145420f347d62e79aac740ea41d99f124073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Absorption</topic><topic>Arrays</topic><topic>Carrier density</topic><topic>Charge carrier density</topic><topic>devices</topic><topic>Electric potential</topic><topic>Electron optics</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>infrared modulator</topic><topic>Intersubband transitions</topic><topic>light modulators</topic><topic>mid-IR</topic><topic>Modulators</topic><topic>nonparabolicity</topic><topic>Optical bistability</topic><topic>Optical elements, devices, and systems</topic><topic>Optical modulation</topic><topic>Optical processors, correlators, and modulators</topic><topic>Optical waveguides</topic><topic>Optics</topic><topic>Physics</topic><topic>Proposals</topic><topic>Quantum dots</topic><topic>quantum wells</topic><topic>Reservoirs</topic><topic>Resonance</topic><topic>Resonant tunneling</topic><topic>Resonant tunneling devices</topic><topic>shift</topic><topic>spectroscopy</topic><topic>stark</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Holmstrom, P.</creatorcontrib><creatorcontrib>Thylen, L.</creatorcontrib><creatorcontrib>Ukenberg, U.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aerospace Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><jtitle>IEEE journal of quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Holmstrom, P.</au><au>Thylen, L.</au><au>Ukenberg, U.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proposal of an optical modulator based on resonant tunneling and intersubband transitions</atitle><jtitle>IEEE journal of quantum electronics</jtitle><stitle>JQE</stitle><date>2001-02-01</date><risdate>2001</risdate><volume>37</volume><issue>2</issue><spage>224</spage><epage>230</epage><pages>224-230</pages><issn>0018-9197</issn><issn>1558-1713</issn><eissn>1558-1713</eissn><coden>IEJQA7</coden><abstract>We propose and analyze an optical modulator based on intersubband transitions. The absorption is modulated by modulating the carrier density in the ground state of a quantum well (QW). Electrons are injected resonantly into this subband from a QW reservoir subband through a single barrier. When the two states are tuned out of resonance, the electrons are rapidly evacuated by means of the optical field. A waveguide based on surface plasmons is assumed in order to have a high optical mode overlap. Calculations are performed for a cascaded structure with four periods, assuming InGaAs-InIAs QWs. The considered modulator structure operates at /spl lambda/=6.0 /spl mu/m and is RC limited to 27 GHz. An extinction ratio of 4 is obtained with a low applied voltage of 0.6 V. At larger applied voltages, the absorption is bistable. Absorption at shorter/longer wavelengths can be obtained by using materials with a larger/smaller conduction band offset. We also assess resonant tunneling from a 2-D electron gas reservoir into an array of quantum dots and compare it to the 2-D-2-D tunneling resonance.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/3.903072</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9197
ispartof IEEE journal of quantum electronics, 2001-02, Vol.37 (2), p.224-230
issn 0018-9197
1558-1713
1558-1713
language eng
recordid cdi_pascalfrancis_primary_882688
source IEEE Electronic Library (IEL)
subjects Absorption
Arrays
Carrier density
Charge carrier density
devices
Electric potential
Electron optics
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
infrared modulator
Intersubband transitions
light modulators
mid-IR
Modulators
nonparabolicity
Optical bistability
Optical elements, devices, and systems
Optical modulation
Optical processors, correlators, and modulators
Optical waveguides
Optics
Physics
Proposals
Quantum dots
quantum wells
Reservoirs
Resonance
Resonant tunneling
Resonant tunneling devices
shift
spectroscopy
stark
Voltage
title Proposal of an optical modulator based on resonant tunneling and intersubband transitions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T15%3A17%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proposal%20of%20an%20optical%20modulator%20based%20on%20resonant%20tunneling%20and%20intersubband%20transitions&rft.jtitle=IEEE%20journal%20of%20quantum%20electronics&rft.au=Holmstrom,%20P.&rft.date=2001-02-01&rft.volume=37&rft.issue=2&rft.spage=224&rft.epage=230&rft.pages=224-230&rft.issn=0018-9197&rft.eissn=1558-1713&rft.coden=IEJQA7&rft_id=info:doi/10.1109/3.903072&rft_dat=%3Cproquest_RIE%3E28502453%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884764652&rft_id=info:pmid/&rft_ieee_id=903072&rfr_iscdi=true