L∞Error Bounds in Partial Deconvolution of the Inverse Gaussian Pulse

When a C∞approximation to the Dirac δ-function, in the form of an inverse Gaussian pulse, is used as input into a linear time invariant system, the output waveform is an approximation to that system's Green's function, in which the singularities have been smoothed out. The ill-posed deconv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on applied mathematics 1985-12, Vol.45 (6), p.1029-1038
Hauptverfasser: Carasso, Alfred S., Hsu, Nelson N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1038
container_issue 6
container_start_page 1029
container_title SIAM journal on applied mathematics
container_volume 45
creator Carasso, Alfred S.
Hsu, Nelson N.
description When a C∞approximation to the Dirac δ-function, in the form of an inverse Gaussian pulse, is used as input into a linear time invariant system, the output waveform is an approximation to that system's Green's function, in which the singularities have been smoothed out. The ill-posed deconvolution problem for the output signal aims at reconstructing these singularities. By exploiting the smoothing properties of the inverse Gaussian kernel, we prove that partial deconvolution of the output waveform, given L2a priori bounds on the data noise and the unknown Green's function, results in L∞error bounds for the regularized solution and its derivatives. Consequently, when the L2norm of the output noise is sufficiently small, partial deconvolution is a pointwise reliable C∞function, which in turn approximates the desired Green's function in many applications.
format Article
fullrecord <record><control><sourceid>jstor_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_8749015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2101520</jstor_id><sourcerecordid>2101520</sourcerecordid><originalsourceid>FETCH-LOGICAL-j505-e28241d167d91a5fadcc226e3e573c03b82cab65dd3797a62f18b8bed4d162923</originalsourceid><addsrcrecordid>eNo9jE9KxDAcRoMoWEdv4CILt4X8aZJmqeNYBwq6mIW74dckxZSaDEk74A08hYfzJBZGXL3Fe993hgpKtCgVZW_nqCCEy5JyrS_RVc4DIZTKSheoaX--vjcpxYQf4hxsxj7gV0iThxE_OhPDMY7z5GPAscfTu8PbcHQpO9zAnLOHpZ7H7K7RRQ8Lb_64QrunzW79XLYvzXZ935aDIKJ0rGYVtVQqqymIHqwxjEnHnVDcEN7VzEAnhbVcaQWS9bTu6s7ZatkwzfgK3Z1uD5ANjH2CYHzeH5L_gPS5r1WlCRVLdnvKhjzF9K8ZXSQj_BddwlNJ</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>L∞Error Bounds in Partial Deconvolution of the Inverse Gaussian Pulse</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>LOCUS - SIAM's Online Journal Archive</source><creator>Carasso, Alfred S. ; Hsu, Nelson N.</creator><creatorcontrib>Carasso, Alfred S. ; Hsu, Nelson N.</creatorcontrib><description>When a C∞approximation to the Dirac δ-function, in the form of an inverse Gaussian pulse, is used as input into a linear time invariant system, the output waveform is an approximation to that system's Green's function, in which the singularities have been smoothed out. The ill-posed deconvolution problem for the output signal aims at reconstructing these singularities. By exploiting the smoothing properties of the inverse Gaussian kernel, we prove that partial deconvolution of the output waveform, given L2a priori bounds on the data noise and the unknown Green's function, results in L∞error bounds for the regularized solution and its derivatives. Consequently, when the L2norm of the output noise is sufficiently small, partial deconvolution is a pointwise reliable C∞function, which in turn approximates the desired Green's function in many applications.</description><identifier>ISSN: 0036-1399</identifier><identifier>EISSN: 1095-712X</identifier><identifier>CODEN: SMJMAP</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>A priori knowledge ; Approximation ; Conductive heat transfer ; Error bounds ; Exact sciences and technology ; Greens function ; Heat equation ; Ill posed problems ; Mathematical functions ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Partial differential equations, miscellaneous problems ; Sciences and techniques of general use ; Signal noise ; Waveforms</subject><ispartof>SIAM journal on applied mathematics, 1985-12, Vol.45 (6), p.1029-1038</ispartof><rights>Copyright 1985 Society for Industrial and Applied Mathematics</rights><rights>1986 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2101520$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2101520$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=8749015$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Carasso, Alfred S.</creatorcontrib><creatorcontrib>Hsu, Nelson N.</creatorcontrib><title>L∞Error Bounds in Partial Deconvolution of the Inverse Gaussian Pulse</title><title>SIAM journal on applied mathematics</title><description>When a C∞approximation to the Dirac δ-function, in the form of an inverse Gaussian pulse, is used as input into a linear time invariant system, the output waveform is an approximation to that system's Green's function, in which the singularities have been smoothed out. The ill-posed deconvolution problem for the output signal aims at reconstructing these singularities. By exploiting the smoothing properties of the inverse Gaussian kernel, we prove that partial deconvolution of the output waveform, given L2a priori bounds on the data noise and the unknown Green's function, results in L∞error bounds for the regularized solution and its derivatives. Consequently, when the L2norm of the output noise is sufficiently small, partial deconvolution is a pointwise reliable C∞function, which in turn approximates the desired Green's function in many applications.</description><subject>A priori knowledge</subject><subject>Approximation</subject><subject>Conductive heat transfer</subject><subject>Error bounds</subject><subject>Exact sciences and technology</subject><subject>Greens function</subject><subject>Heat equation</subject><subject>Ill posed problems</subject><subject>Mathematical functions</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Partial differential equations, miscellaneous problems</subject><subject>Sciences and techniques of general use</subject><subject>Signal noise</subject><subject>Waveforms</subject><issn>0036-1399</issn><issn>1095-712X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1985</creationdate><recordtype>article</recordtype><recordid>eNo9jE9KxDAcRoMoWEdv4CILt4X8aZJmqeNYBwq6mIW74dckxZSaDEk74A08hYfzJBZGXL3Fe993hgpKtCgVZW_nqCCEy5JyrS_RVc4DIZTKSheoaX--vjcpxYQf4hxsxj7gV0iThxE_OhPDMY7z5GPAscfTu8PbcHQpO9zAnLOHpZ7H7K7RRQ8Lb_64QrunzW79XLYvzXZ935aDIKJ0rGYVtVQqqymIHqwxjEnHnVDcEN7VzEAnhbVcaQWS9bTu6s7ZatkwzfgK3Z1uD5ANjH2CYHzeH5L_gPS5r1WlCRVLdnvKhjzF9K8ZXSQj_BddwlNJ</recordid><startdate>19851201</startdate><enddate>19851201</enddate><creator>Carasso, Alfred S.</creator><creator>Hsu, Nelson N.</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope></search><sort><creationdate>19851201</creationdate><title>L∞Error Bounds in Partial Deconvolution of the Inverse Gaussian Pulse</title><author>Carasso, Alfred S. ; Hsu, Nelson N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j505-e28241d167d91a5fadcc226e3e573c03b82cab65dd3797a62f18b8bed4d162923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1985</creationdate><topic>A priori knowledge</topic><topic>Approximation</topic><topic>Conductive heat transfer</topic><topic>Error bounds</topic><topic>Exact sciences and technology</topic><topic>Greens function</topic><topic>Heat equation</topic><topic>Ill posed problems</topic><topic>Mathematical functions</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Partial differential equations, miscellaneous problems</topic><topic>Sciences and techniques of general use</topic><topic>Signal noise</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carasso, Alfred S.</creatorcontrib><creatorcontrib>Hsu, Nelson N.</creatorcontrib><collection>Pascal-Francis</collection><jtitle>SIAM journal on applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carasso, Alfred S.</au><au>Hsu, Nelson N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>L∞Error Bounds in Partial Deconvolution of the Inverse Gaussian Pulse</atitle><jtitle>SIAM journal on applied mathematics</jtitle><date>1985-12-01</date><risdate>1985</risdate><volume>45</volume><issue>6</issue><spage>1029</spage><epage>1038</epage><pages>1029-1038</pages><issn>0036-1399</issn><eissn>1095-712X</eissn><coden>SMJMAP</coden><abstract>When a C∞approximation to the Dirac δ-function, in the form of an inverse Gaussian pulse, is used as input into a linear time invariant system, the output waveform is an approximation to that system's Green's function, in which the singularities have been smoothed out. The ill-posed deconvolution problem for the output signal aims at reconstructing these singularities. By exploiting the smoothing properties of the inverse Gaussian kernel, we prove that partial deconvolution of the output waveform, given L2a priori bounds on the data noise and the unknown Green's function, results in L∞error bounds for the regularized solution and its derivatives. Consequently, when the L2norm of the output noise is sufficiently small, partial deconvolution is a pointwise reliable C∞function, which in turn approximates the desired Green's function in many applications.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-1399
ispartof SIAM journal on applied mathematics, 1985-12, Vol.45 (6), p.1029-1038
issn 0036-1399
1095-712X
language eng
recordid cdi_pascalfrancis_primary_8749015
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; LOCUS - SIAM's Online Journal Archive
subjects A priori knowledge
Approximation
Conductive heat transfer
Error bounds
Exact sciences and technology
Greens function
Heat equation
Ill posed problems
Mathematical functions
Mathematics
Numerical analysis
Numerical analysis. Scientific computation
Partial differential equations, miscellaneous problems
Sciences and techniques of general use
Signal noise
Waveforms
title L∞Error Bounds in Partial Deconvolution of the Inverse Gaussian Pulse
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T23%3A00%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=L%E2%88%9EError%20Bounds%20in%20Partial%20Deconvolution%20of%20the%20Inverse%20Gaussian%20Pulse&rft.jtitle=SIAM%20journal%20on%20applied%20mathematics&rft.au=Carasso,%20Alfred%20S.&rft.date=1985-12-01&rft.volume=45&rft.issue=6&rft.spage=1029&rft.epage=1038&rft.pages=1029-1038&rft.issn=0036-1399&rft.eissn=1095-712X&rft.coden=SMJMAP&rft_id=info:doi/&rft_dat=%3Cjstor_pasca%3E2101520%3C/jstor_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=2101520&rfr_iscdi=true