Molecular Structure of the G· A Base Pair in DNA and Its Implications for the Mechanism of Transversion Mutations
The synthetic deoxydodecamer d(C-G-C-G-A-A-T-T-A-G-C-G) was analyzed by x-ray diffraction methods, and the structure was refined to a residual error of R = 0.17 at 2.5- angstrom resolution (2 σ data) with 83 water molecules located. The sequence crystallizes as a full turn of a B-DNA helix and conta...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 1986-04, Vol.83 (8), p.2402-2406 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2406 |
---|---|
container_issue | 8 |
container_start_page | 2402 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 83 |
creator | Brown, Tom Hunter, William N. Kneale, Geoff Kennard, Olga |
description | The synthetic deoxydodecamer d(C-G-C-G-A-A-T-T-A-G-C-G) was analyzed by x-ray diffraction methods, and the structure was refined to a residual error of R = 0.17 at 2.5- angstrom resolution (2 σ data) with 83 water molecules located. The sequence crystallizes as a full turn of a B-DNA helix and contains 2 purine· purine (G· A) base pairs and 10 Watson-Crick base pairs. The analysis shows conclusively that adenine is in the syn orientation with respect to the sugar moiety whereas guanine adopts the usual trans orientation. Nitrogen atoms of both bases are involved in hydrogen bonding with the N-1 of guanine 2.84 angstrom from the N-7 of adenine and the N-6 of adenine within 2.74 angstrom of the O-6 of guanine. The C-1′⋯ C-1′ separation is 10.7 angstrom close to that for standard Watson-Crick base pairs. The incorporation of the purine· purine base pairs at two steps in the dodecamer causes little perturbation of either the local or the global conformation of the double helix. Comparison of the structural features with those of the G· T wobble pair and the standard G· C pair suggests a rationale for the differential enzymatic repair of the two types of base-pair mismatches. |
doi_str_mv | 10.1073/pnas.83.8.2402 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_8698976</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27291</jstor_id><sourcerecordid>27291</sourcerecordid><originalsourceid>FETCH-LOGICAL-j201t-cae039b80ef225ed929498b85a3e6439ad332f182c1930145e1bc905059b3f643</originalsourceid><addsrcrecordid>eNo9zr1OwzAUBWALgUQprAxMHlgTru382GMpUCq1gESZqxvXVl2lSWQ7SDwZO09GoIjpDuc7R5eQSwYpg1LcdA2GVIpUpjwDfkRGDBRLikzBMRkB8DKRGc9OyVkIOwBQuYQR8cu2Nrqv0dPX6Hsde29oa2ncGjr7-qQTeovB0Bd0nrqG3j1NKDYbOo-Bzvdd7TRG1zaB2tb_dpZGb7FxYf8zsvLYhHfjw0Doso8He05OLNbBXPzdMXl7uF9NH5PF82w-nSySHQcWE40GhKokGMt5bjaKq0zJSuYoTJEJhRshuGWSa6YEsCw3rNIKcshVJewgxuT6sNth0Fjb4Rntwrrzbo_-Yy0LJVVZDOzqwHYhtv4_5iVXTHwD7ERmNw</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Molecular Structure of the G· A Base Pair in DNA and Its Implications for the Mechanism of Transversion Mutations</title><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>JSTOR</source><creator>Brown, Tom ; Hunter, William N. ; Kneale, Geoff ; Kennard, Olga</creator><creatorcontrib>Brown, Tom ; Hunter, William N. ; Kneale, Geoff ; Kennard, Olga</creatorcontrib><description>The synthetic deoxydodecamer d(C-G-C-G-A-A-T-T-A-G-C-G) was analyzed by x-ray diffraction methods, and the structure was refined to a residual error of R = 0.17 at 2.5- angstrom resolution (2 σ data) with 83 water molecules located. The sequence crystallizes as a full turn of a B-DNA helix and contains 2 purine· purine (G· A) base pairs and 10 Watson-Crick base pairs. The analysis shows conclusively that adenine is in the syn orientation with respect to the sugar moiety whereas guanine adopts the usual trans orientation. Nitrogen atoms of both bases are involved in hydrogen bonding with the N-1 of guanine 2.84 angstrom from the N-7 of adenine and the N-6 of adenine within 2.74 angstrom of the O-6 of guanine. The C-1′⋯ C-1′ separation is 10.7 angstrom close to that for standard Watson-Crick base pairs. The incorporation of the purine· purine base pairs at two steps in the dodecamer causes little perturbation of either the local or the global conformation of the double helix. Comparison of the structural features with those of the G· T wobble pair and the standard G· C pair suggests a rationale for the differential enzymatic repair of the two types of base-pair mismatches.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.83.8.2402</identifier><identifier>CODEN: PNASA6</identifier><language>eng</language><publisher>Washington, DC: National Academy of Sciences of the United States of America</publisher><subject>Base pair mismatch ; Biological and medical sciences ; Crystal structure ; DNA ; Electron density ; Fundamental and applied biological sciences. Psychology ; Genetic mutation ; Molecular and cellular biology ; Molecular genetics ; Molecules ; Mutagenesis. Repair ; Purines ; Solvents ; Tautomers</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1986-04, Vol.83 (8), p.2402-2406</ispartof><rights>1986 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27291$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27291$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27922,27923,58015,58248</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=8698976$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Brown, Tom</creatorcontrib><creatorcontrib>Hunter, William N.</creatorcontrib><creatorcontrib>Kneale, Geoff</creatorcontrib><creatorcontrib>Kennard, Olga</creatorcontrib><title>Molecular Structure of the G· A Base Pair in DNA and Its Implications for the Mechanism of Transversion Mutations</title><title>Proceedings of the National Academy of Sciences - PNAS</title><description>The synthetic deoxydodecamer d(C-G-C-G-A-A-T-T-A-G-C-G) was analyzed by x-ray diffraction methods, and the structure was refined to a residual error of R = 0.17 at 2.5- angstrom resolution (2 σ data) with 83 water molecules located. The sequence crystallizes as a full turn of a B-DNA helix and contains 2 purine· purine (G· A) base pairs and 10 Watson-Crick base pairs. The analysis shows conclusively that adenine is in the syn orientation with respect to the sugar moiety whereas guanine adopts the usual trans orientation. Nitrogen atoms of both bases are involved in hydrogen bonding with the N-1 of guanine 2.84 angstrom from the N-7 of adenine and the N-6 of adenine within 2.74 angstrom of the O-6 of guanine. The C-1′⋯ C-1′ separation is 10.7 angstrom close to that for standard Watson-Crick base pairs. The incorporation of the purine· purine base pairs at two steps in the dodecamer causes little perturbation of either the local or the global conformation of the double helix. Comparison of the structural features with those of the G· T wobble pair and the standard G· C pair suggests a rationale for the differential enzymatic repair of the two types of base-pair mismatches.</description><subject>Base pair mismatch</subject><subject>Biological and medical sciences</subject><subject>Crystal structure</subject><subject>DNA</subject><subject>Electron density</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genetic mutation</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>Molecules</subject><subject>Mutagenesis. Repair</subject><subject>Purines</subject><subject>Solvents</subject><subject>Tautomers</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1986</creationdate><recordtype>article</recordtype><recordid>eNo9zr1OwzAUBWALgUQprAxMHlgTru382GMpUCq1gESZqxvXVl2lSWQ7SDwZO09GoIjpDuc7R5eQSwYpg1LcdA2GVIpUpjwDfkRGDBRLikzBMRkB8DKRGc9OyVkIOwBQuYQR8cu2Nrqv0dPX6Hsde29oa2ncGjr7-qQTeovB0Bd0nrqG3j1NKDYbOo-Bzvdd7TRG1zaB2tb_dpZGb7FxYf8zsvLYhHfjw0Doso8He05OLNbBXPzdMXl7uF9NH5PF82w-nSySHQcWE40GhKokGMt5bjaKq0zJSuYoTJEJhRshuGWSa6YEsCw3rNIKcshVJewgxuT6sNth0Fjb4Rntwrrzbo_-Yy0LJVVZDOzqwHYhtv4_5iVXTHwD7ERmNw</recordid><startdate>19860415</startdate><enddate>19860415</enddate><creator>Brown, Tom</creator><creator>Hunter, William N.</creator><creator>Kneale, Geoff</creator><creator>Kennard, Olga</creator><general>National Academy of Sciences of the United States of America</general><scope>IQODW</scope></search><sort><creationdate>19860415</creationdate><title>Molecular Structure of the G· A Base Pair in DNA and Its Implications for the Mechanism of Transversion Mutations</title><author>Brown, Tom ; Hunter, William N. ; Kneale, Geoff ; Kennard, Olga</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j201t-cae039b80ef225ed929498b85a3e6439ad332f182c1930145e1bc905059b3f643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1986</creationdate><topic>Base pair mismatch</topic><topic>Biological and medical sciences</topic><topic>Crystal structure</topic><topic>DNA</topic><topic>Electron density</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genetic mutation</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>Molecules</topic><topic>Mutagenesis. Repair</topic><topic>Purines</topic><topic>Solvents</topic><topic>Tautomers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brown, Tom</creatorcontrib><creatorcontrib>Hunter, William N.</creatorcontrib><creatorcontrib>Kneale, Geoff</creatorcontrib><creatorcontrib>Kennard, Olga</creatorcontrib><collection>Pascal-Francis</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brown, Tom</au><au>Hunter, William N.</au><au>Kneale, Geoff</au><au>Kennard, Olga</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Structure of the G· A Base Pair in DNA and Its Implications for the Mechanism of Transversion Mutations</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><date>1986-04-15</date><risdate>1986</risdate><volume>83</volume><issue>8</issue><spage>2402</spage><epage>2406</epage><pages>2402-2406</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><coden>PNASA6</coden><abstract>The synthetic deoxydodecamer d(C-G-C-G-A-A-T-T-A-G-C-G) was analyzed by x-ray diffraction methods, and the structure was refined to a residual error of R = 0.17 at 2.5- angstrom resolution (2 σ data) with 83 water molecules located. The sequence crystallizes as a full turn of a B-DNA helix and contains 2 purine· purine (G· A) base pairs and 10 Watson-Crick base pairs. The analysis shows conclusively that adenine is in the syn orientation with respect to the sugar moiety whereas guanine adopts the usual trans orientation. Nitrogen atoms of both bases are involved in hydrogen bonding with the N-1 of guanine 2.84 angstrom from the N-7 of adenine and the N-6 of adenine within 2.74 angstrom of the O-6 of guanine. The C-1′⋯ C-1′ separation is 10.7 angstrom close to that for standard Watson-Crick base pairs. The incorporation of the purine· purine base pairs at two steps in the dodecamer causes little perturbation of either the local or the global conformation of the double helix. Comparison of the structural features with those of the G· T wobble pair and the standard G· C pair suggests a rationale for the differential enzymatic repair of the two types of base-pair mismatches.</abstract><cop>Washington, DC</cop><pub>National Academy of Sciences of the United States of America</pub><doi>10.1073/pnas.83.8.2402</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 1986-04, Vol.83 (8), p.2402-2406 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pascalfrancis_primary_8698976 |
source | PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; JSTOR |
subjects | Base pair mismatch Biological and medical sciences Crystal structure DNA Electron density Fundamental and applied biological sciences. Psychology Genetic mutation Molecular and cellular biology Molecular genetics Molecules Mutagenesis. Repair Purines Solvents Tautomers |
title | Molecular Structure of the G· A Base Pair in DNA and Its Implications for the Mechanism of Transversion Mutations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T16%3A22%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Structure%20of%20the%20G%C2%B7%20A%20Base%20Pair%20in%20DNA%20and%20Its%20Implications%20for%20the%20Mechanism%20of%20Transversion%20Mutations&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Brown,%20Tom&rft.date=1986-04-15&rft.volume=83&rft.issue=8&rft.spage=2402&rft.epage=2406&rft.pages=2402-2406&rft.issn=0027-8424&rft.eissn=1091-6490&rft.coden=PNASA6&rft_id=info:doi/10.1073/pnas.83.8.2402&rft_dat=%3Cjstor_pasca%3E27291%3C/jstor_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=27291&rfr_iscdi=true |