Molecular Structure of the G· A Base Pair in DNA and Its Implications for the Mechanism of Transversion Mutations

The synthetic deoxydodecamer d(C-G-C-G-A-A-T-T-A-G-C-G) was analyzed by x-ray diffraction methods, and the structure was refined to a residual error of R = 0.17 at 2.5- angstrom resolution (2 σ data) with 83 water molecules located. The sequence crystallizes as a full turn of a B-DNA helix and conta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1986-04, Vol.83 (8), p.2402-2406
Hauptverfasser: Brown, Tom, Hunter, William N., Kneale, Geoff, Kennard, Olga
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2406
container_issue 8
container_start_page 2402
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 83
creator Brown, Tom
Hunter, William N.
Kneale, Geoff
Kennard, Olga
description The synthetic deoxydodecamer d(C-G-C-G-A-A-T-T-A-G-C-G) was analyzed by x-ray diffraction methods, and the structure was refined to a residual error of R = 0.17 at 2.5- angstrom resolution (2 σ data) with 83 water molecules located. The sequence crystallizes as a full turn of a B-DNA helix and contains 2 purine· purine (G· A) base pairs and 10 Watson-Crick base pairs. The analysis shows conclusively that adenine is in the syn orientation with respect to the sugar moiety whereas guanine adopts the usual trans orientation. Nitrogen atoms of both bases are involved in hydrogen bonding with the N-1 of guanine 2.84 angstrom from the N-7 of adenine and the N-6 of adenine within 2.74 angstrom of the O-6 of guanine. The C-1′⋯ C-1′ separation is 10.7 angstrom close to that for standard Watson-Crick base pairs. The incorporation of the purine· purine base pairs at two steps in the dodecamer causes little perturbation of either the local or the global conformation of the double helix. Comparison of the structural features with those of the G· T wobble pair and the standard G· C pair suggests a rationale for the differential enzymatic repair of the two types of base-pair mismatches.
doi_str_mv 10.1073/pnas.83.8.2402
format Article
fullrecord <record><control><sourceid>jstor_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_8698976</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27291</jstor_id><sourcerecordid>27291</sourcerecordid><originalsourceid>FETCH-LOGICAL-j201t-cae039b80ef225ed929498b85a3e6439ad332f182c1930145e1bc905059b3f643</originalsourceid><addsrcrecordid>eNo9zr1OwzAUBWALgUQprAxMHlgTru382GMpUCq1gESZqxvXVl2lSWQ7SDwZO09GoIjpDuc7R5eQSwYpg1LcdA2GVIpUpjwDfkRGDBRLikzBMRkB8DKRGc9OyVkIOwBQuYQR8cu2Nrqv0dPX6Hsde29oa2ncGjr7-qQTeovB0Bd0nrqG3j1NKDYbOo-Bzvdd7TRG1zaB2tb_dpZGb7FxYf8zsvLYhHfjw0Doso8He05OLNbBXPzdMXl7uF9NH5PF82w-nSySHQcWE40GhKokGMt5bjaKq0zJSuYoTJEJhRshuGWSa6YEsCw3rNIKcshVJewgxuT6sNth0Fjb4Rntwrrzbo_-Yy0LJVVZDOzqwHYhtv4_5iVXTHwD7ERmNw</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Molecular Structure of the G· A Base Pair in DNA and Its Implications for the Mechanism of Transversion Mutations</title><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>JSTOR</source><creator>Brown, Tom ; Hunter, William N. ; Kneale, Geoff ; Kennard, Olga</creator><creatorcontrib>Brown, Tom ; Hunter, William N. ; Kneale, Geoff ; Kennard, Olga</creatorcontrib><description>The synthetic deoxydodecamer d(C-G-C-G-A-A-T-T-A-G-C-G) was analyzed by x-ray diffraction methods, and the structure was refined to a residual error of R = 0.17 at 2.5- angstrom resolution (2 σ data) with 83 water molecules located. The sequence crystallizes as a full turn of a B-DNA helix and contains 2 purine· purine (G· A) base pairs and 10 Watson-Crick base pairs. The analysis shows conclusively that adenine is in the syn orientation with respect to the sugar moiety whereas guanine adopts the usual trans orientation. Nitrogen atoms of both bases are involved in hydrogen bonding with the N-1 of guanine 2.84 angstrom from the N-7 of adenine and the N-6 of adenine within 2.74 angstrom of the O-6 of guanine. The C-1′⋯ C-1′ separation is 10.7 angstrom close to that for standard Watson-Crick base pairs. The incorporation of the purine· purine base pairs at two steps in the dodecamer causes little perturbation of either the local or the global conformation of the double helix. Comparison of the structural features with those of the G· T wobble pair and the standard G· C pair suggests a rationale for the differential enzymatic repair of the two types of base-pair mismatches.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.83.8.2402</identifier><identifier>CODEN: PNASA6</identifier><language>eng</language><publisher>Washington, DC: National Academy of Sciences of the United States of America</publisher><subject>Base pair mismatch ; Biological and medical sciences ; Crystal structure ; DNA ; Electron density ; Fundamental and applied biological sciences. Psychology ; Genetic mutation ; Molecular and cellular biology ; Molecular genetics ; Molecules ; Mutagenesis. Repair ; Purines ; Solvents ; Tautomers</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1986-04, Vol.83 (8), p.2402-2406</ispartof><rights>1986 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27291$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27291$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27922,27923,58015,58248</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=8698976$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Brown, Tom</creatorcontrib><creatorcontrib>Hunter, William N.</creatorcontrib><creatorcontrib>Kneale, Geoff</creatorcontrib><creatorcontrib>Kennard, Olga</creatorcontrib><title>Molecular Structure of the G· A Base Pair in DNA and Its Implications for the Mechanism of Transversion Mutations</title><title>Proceedings of the National Academy of Sciences - PNAS</title><description>The synthetic deoxydodecamer d(C-G-C-G-A-A-T-T-A-G-C-G) was analyzed by x-ray diffraction methods, and the structure was refined to a residual error of R = 0.17 at 2.5- angstrom resolution (2 σ data) with 83 water molecules located. The sequence crystallizes as a full turn of a B-DNA helix and contains 2 purine· purine (G· A) base pairs and 10 Watson-Crick base pairs. The analysis shows conclusively that adenine is in the syn orientation with respect to the sugar moiety whereas guanine adopts the usual trans orientation. Nitrogen atoms of both bases are involved in hydrogen bonding with the N-1 of guanine 2.84 angstrom from the N-7 of adenine and the N-6 of adenine within 2.74 angstrom of the O-6 of guanine. The C-1′⋯ C-1′ separation is 10.7 angstrom close to that for standard Watson-Crick base pairs. The incorporation of the purine· purine base pairs at two steps in the dodecamer causes little perturbation of either the local or the global conformation of the double helix. Comparison of the structural features with those of the G· T wobble pair and the standard G· C pair suggests a rationale for the differential enzymatic repair of the two types of base-pair mismatches.</description><subject>Base pair mismatch</subject><subject>Biological and medical sciences</subject><subject>Crystal structure</subject><subject>DNA</subject><subject>Electron density</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genetic mutation</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>Molecules</subject><subject>Mutagenesis. Repair</subject><subject>Purines</subject><subject>Solvents</subject><subject>Tautomers</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1986</creationdate><recordtype>article</recordtype><recordid>eNo9zr1OwzAUBWALgUQprAxMHlgTru382GMpUCq1gESZqxvXVl2lSWQ7SDwZO09GoIjpDuc7R5eQSwYpg1LcdA2GVIpUpjwDfkRGDBRLikzBMRkB8DKRGc9OyVkIOwBQuYQR8cu2Nrqv0dPX6Hsde29oa2ncGjr7-qQTeovB0Bd0nrqG3j1NKDYbOo-Bzvdd7TRG1zaB2tb_dpZGb7FxYf8zsvLYhHfjw0Doso8He05OLNbBXPzdMXl7uF9NH5PF82w-nSySHQcWE40GhKokGMt5bjaKq0zJSuYoTJEJhRshuGWSa6YEsCw3rNIKcshVJewgxuT6sNth0Fjb4Rntwrrzbo_-Yy0LJVVZDOzqwHYhtv4_5iVXTHwD7ERmNw</recordid><startdate>19860415</startdate><enddate>19860415</enddate><creator>Brown, Tom</creator><creator>Hunter, William N.</creator><creator>Kneale, Geoff</creator><creator>Kennard, Olga</creator><general>National Academy of Sciences of the United States of America</general><scope>IQODW</scope></search><sort><creationdate>19860415</creationdate><title>Molecular Structure of the G· A Base Pair in DNA and Its Implications for the Mechanism of Transversion Mutations</title><author>Brown, Tom ; Hunter, William N. ; Kneale, Geoff ; Kennard, Olga</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j201t-cae039b80ef225ed929498b85a3e6439ad332f182c1930145e1bc905059b3f643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1986</creationdate><topic>Base pair mismatch</topic><topic>Biological and medical sciences</topic><topic>Crystal structure</topic><topic>DNA</topic><topic>Electron density</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genetic mutation</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>Molecules</topic><topic>Mutagenesis. Repair</topic><topic>Purines</topic><topic>Solvents</topic><topic>Tautomers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brown, Tom</creatorcontrib><creatorcontrib>Hunter, William N.</creatorcontrib><creatorcontrib>Kneale, Geoff</creatorcontrib><creatorcontrib>Kennard, Olga</creatorcontrib><collection>Pascal-Francis</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brown, Tom</au><au>Hunter, William N.</au><au>Kneale, Geoff</au><au>Kennard, Olga</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Structure of the G· A Base Pair in DNA and Its Implications for the Mechanism of Transversion Mutations</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><date>1986-04-15</date><risdate>1986</risdate><volume>83</volume><issue>8</issue><spage>2402</spage><epage>2406</epage><pages>2402-2406</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><coden>PNASA6</coden><abstract>The synthetic deoxydodecamer d(C-G-C-G-A-A-T-T-A-G-C-G) was analyzed by x-ray diffraction methods, and the structure was refined to a residual error of R = 0.17 at 2.5- angstrom resolution (2 σ data) with 83 water molecules located. The sequence crystallizes as a full turn of a B-DNA helix and contains 2 purine· purine (G· A) base pairs and 10 Watson-Crick base pairs. The analysis shows conclusively that adenine is in the syn orientation with respect to the sugar moiety whereas guanine adopts the usual trans orientation. Nitrogen atoms of both bases are involved in hydrogen bonding with the N-1 of guanine 2.84 angstrom from the N-7 of adenine and the N-6 of adenine within 2.74 angstrom of the O-6 of guanine. The C-1′⋯ C-1′ separation is 10.7 angstrom close to that for standard Watson-Crick base pairs. The incorporation of the purine· purine base pairs at two steps in the dodecamer causes little perturbation of either the local or the global conformation of the double helix. Comparison of the structural features with those of the G· T wobble pair and the standard G· C pair suggests a rationale for the differential enzymatic repair of the two types of base-pair mismatches.</abstract><cop>Washington, DC</cop><pub>National Academy of Sciences of the United States of America</pub><doi>10.1073/pnas.83.8.2402</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 1986-04, Vol.83 (8), p.2402-2406
issn 0027-8424
1091-6490
language eng
recordid cdi_pascalfrancis_primary_8698976
source PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; JSTOR
subjects Base pair mismatch
Biological and medical sciences
Crystal structure
DNA
Electron density
Fundamental and applied biological sciences. Psychology
Genetic mutation
Molecular and cellular biology
Molecular genetics
Molecules
Mutagenesis. Repair
Purines
Solvents
Tautomers
title Molecular Structure of the G· A Base Pair in DNA and Its Implications for the Mechanism of Transversion Mutations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T16%3A22%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Structure%20of%20the%20G%C2%B7%20A%20Base%20Pair%20in%20DNA%20and%20Its%20Implications%20for%20the%20Mechanism%20of%20Transversion%20Mutations&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Brown,%20Tom&rft.date=1986-04-15&rft.volume=83&rft.issue=8&rft.spage=2402&rft.epage=2406&rft.pages=2402-2406&rft.issn=0027-8424&rft.eissn=1091-6490&rft.coden=PNASA6&rft_id=info:doi/10.1073/pnas.83.8.2402&rft_dat=%3Cjstor_pasca%3E27291%3C/jstor_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=27291&rfr_iscdi=true