Generalized moments applied to Fermi‐type functions
Generalized integral moments are defined for a general class of saturating functions [ f(0)=ρ0, f(∞)=0]. They are useful as independent variables for describing surface properties or macroscopic dynamics of finite systems. Applied especially to functions of the Fermi type, analytic solutions are giv...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 1985-07, Vol.26 (7), p.1570-1575 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1575 |
---|---|
container_issue | 7 |
container_start_page | 1570 |
container_title | Journal of mathematical physics |
container_volume | 26 |
creator | Wendel, M. H. Hilf, E. R. |
description | Generalized integral moments are defined for a general class of saturating functions [ f(0)=ρ0, f(∞)=0]. They are useful as independent variables for describing surface properties or macroscopic dynamics of finite systems. Applied especially to functions of the Fermi type, analytic solutions are given in terms of a semiconverging, and of a numerically semiunstable expansion, respectively, suitable for numerical evaluation. Results are compared to the semidivergent expansion as given by Åberg, of which some properties are exhibited here, and with the exact numerical solutions known for this special example. |
doi_str_mv | 10.1063/1.526919 |
format | Article |
fullrecord | <record><control><sourceid>scitation_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_8580601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jmp</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-3e58016312aa406f7e85d67727ef6456576416877ea4d491ecb3d163c8b697bd3</originalsourceid><addsrcrecordid>eNp9z81KAzEUBeAgCtYq-AizcKGLqbn5n6UUW4WCG10PaeYGIvNHMgp15SP4jD6JU0a609XlwsfhHEIugS6AKn4LC8lUAcURmQE1Ra6VNMdkRiljORPGnJKzlF4pBTBCzIhcY4vR1uEDq6zpGmyHlNm-r8P4D122wtiE78-vYddj5t9aN4SuTefkxNs64cXvnZOX1f3z8iHfPK0fl3eb3HEmhpyjNBQUB2atoMprNLJSWjONXgmppFYClNEarahEAei2vBq9M1tV6G3F5-R6ynWxSymiL_sYGht3JdByP7eEcpo70quJ9jY5W_toWxfSwZuxiaIwspuJJRcGux_zX-Sf9r2LB1f2lec_jklvbg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Generalized moments applied to Fermi‐type functions</title><source>AIP Digital Archive</source><creator>Wendel, M. H. ; Hilf, E. R.</creator><creatorcontrib>Wendel, M. H. ; Hilf, E. R.</creatorcontrib><description>Generalized integral moments are defined for a general class of saturating functions [ f(0)=ρ0, f(∞)=0]. They are useful as independent variables for describing surface properties or macroscopic dynamics of finite systems. Applied especially to functions of the Fermi type, analytic solutions are given in terms of a semiconverging, and of a numerically semiunstable expansion, respectively, suitable for numerical evaluation. Results are compared to the semidivergent expansion as given by Åberg, of which some properties are exhibited here, and with the exact numerical solutions known for this special example.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.526919</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>Exact sciences and technology ; Function theory, analysis ; Mathematical methods in physics ; Physics</subject><ispartof>Journal of mathematical physics, 1985-07, Vol.26 (7), p.1570-1575</ispartof><rights>American Institute of Physics</rights><rights>1986 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-3e58016312aa406f7e85d67727ef6456576416877ea4d491ecb3d163c8b697bd3</citedby><cites>FETCH-LOGICAL-c324t-3e58016312aa406f7e85d67727ef6456576416877ea4d491ecb3d163c8b697bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.526919$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,1559,27924,27925,76262</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=8580601$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wendel, M. H.</creatorcontrib><creatorcontrib>Hilf, E. R.</creatorcontrib><title>Generalized moments applied to Fermi‐type functions</title><title>Journal of mathematical physics</title><description>Generalized integral moments are defined for a general class of saturating functions [ f(0)=ρ0, f(∞)=0]. They are useful as independent variables for describing surface properties or macroscopic dynamics of finite systems. Applied especially to functions of the Fermi type, analytic solutions are given in terms of a semiconverging, and of a numerically semiunstable expansion, respectively, suitable for numerical evaluation. Results are compared to the semidivergent expansion as given by Åberg, of which some properties are exhibited here, and with the exact numerical solutions known for this special example.</description><subject>Exact sciences and technology</subject><subject>Function theory, analysis</subject><subject>Mathematical methods in physics</subject><subject>Physics</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1985</creationdate><recordtype>article</recordtype><recordid>eNp9z81KAzEUBeAgCtYq-AizcKGLqbn5n6UUW4WCG10PaeYGIvNHMgp15SP4jD6JU0a609XlwsfhHEIugS6AKn4LC8lUAcURmQE1Ra6VNMdkRiljORPGnJKzlF4pBTBCzIhcY4vR1uEDq6zpGmyHlNm-r8P4D122wtiE78-vYddj5t9aN4SuTefkxNs64cXvnZOX1f3z8iHfPK0fl3eb3HEmhpyjNBQUB2atoMprNLJSWjONXgmppFYClNEarahEAei2vBq9M1tV6G3F5-R6ynWxSymiL_sYGht3JdByP7eEcpo70quJ9jY5W_toWxfSwZuxiaIwspuJJRcGux_zX-Sf9r2LB1f2lec_jklvbg</recordid><startdate>198507</startdate><enddate>198507</enddate><creator>Wendel, M. H.</creator><creator>Hilf, E. R.</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>198507</creationdate><title>Generalized moments applied to Fermi‐type functions</title><author>Wendel, M. H. ; Hilf, E. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-3e58016312aa406f7e85d67727ef6456576416877ea4d491ecb3d163c8b697bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1985</creationdate><topic>Exact sciences and technology</topic><topic>Function theory, analysis</topic><topic>Mathematical methods in physics</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wendel, M. H.</creatorcontrib><creatorcontrib>Hilf, E. R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wendel, M. H.</au><au>Hilf, E. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized moments applied to Fermi‐type functions</atitle><jtitle>Journal of mathematical physics</jtitle><date>1985-07</date><risdate>1985</risdate><volume>26</volume><issue>7</issue><spage>1570</spage><epage>1575</epage><pages>1570-1575</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>Generalized integral moments are defined for a general class of saturating functions [ f(0)=ρ0, f(∞)=0]. They are useful as independent variables for describing surface properties or macroscopic dynamics of finite systems. Applied especially to functions of the Fermi type, analytic solutions are given in terms of a semiconverging, and of a numerically semiunstable expansion, respectively, suitable for numerical evaluation. Results are compared to the semidivergent expansion as given by Åberg, of which some properties are exhibited here, and with the exact numerical solutions known for this special example.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.526919</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | Journal of mathematical physics, 1985-07, Vol.26 (7), p.1570-1575 |
issn | 0022-2488 1089-7658 |
language | eng |
recordid | cdi_pascalfrancis_primary_8580601 |
source | AIP Digital Archive |
subjects | Exact sciences and technology Function theory, analysis Mathematical methods in physics Physics |
title | Generalized moments applied to Fermi‐type functions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A12%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20moments%20applied%20to%20Fermi%E2%80%90type%20functions&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Wendel,%20M.%20H.&rft.date=1985-07&rft.volume=26&rft.issue=7&rft.spage=1570&rft.epage=1575&rft.pages=1570-1575&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.526919&rft_dat=%3Cscitation_pasca%3Ejmp%3C/scitation_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |