Generalized moments applied to Fermi‐type functions

Generalized integral moments are defined for a general class of saturating functions [ f(0)=ρ0, f(∞)=0]. They are useful as independent variables for describing surface properties or macroscopic dynamics of finite systems. Applied especially to functions of the Fermi type, analytic solutions are giv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 1985-07, Vol.26 (7), p.1570-1575
Hauptverfasser: Wendel, M. H., Hilf, E. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1575
container_issue 7
container_start_page 1570
container_title Journal of mathematical physics
container_volume 26
creator Wendel, M. H.
Hilf, E. R.
description Generalized integral moments are defined for a general class of saturating functions [ f(0)=ρ0, f(∞)=0]. They are useful as independent variables for describing surface properties or macroscopic dynamics of finite systems. Applied especially to functions of the Fermi type, analytic solutions are given in terms of a semiconverging, and of a numerically semiunstable expansion, respectively, suitable for numerical evaluation. Results are compared to the semidivergent expansion as given by Åberg, of which some properties are exhibited here, and with the exact numerical solutions known for this special example.
doi_str_mv 10.1063/1.526919
format Article
fullrecord <record><control><sourceid>scitation_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_8580601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jmp</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-3e58016312aa406f7e85d67727ef6456576416877ea4d491ecb3d163c8b697bd3</originalsourceid><addsrcrecordid>eNp9z81KAzEUBeAgCtYq-AizcKGLqbn5n6UUW4WCG10PaeYGIvNHMgp15SP4jD6JU0a609XlwsfhHEIugS6AKn4LC8lUAcURmQE1Ra6VNMdkRiljORPGnJKzlF4pBTBCzIhcY4vR1uEDq6zpGmyHlNm-r8P4D122wtiE78-vYddj5t9aN4SuTefkxNs64cXvnZOX1f3z8iHfPK0fl3eb3HEmhpyjNBQUB2atoMprNLJSWjONXgmppFYClNEarahEAei2vBq9M1tV6G3F5-R6ynWxSymiL_sYGht3JdByP7eEcpo70quJ9jY5W_toWxfSwZuxiaIwspuJJRcGux_zX-Sf9r2LB1f2lec_jklvbg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Generalized moments applied to Fermi‐type functions</title><source>AIP Digital Archive</source><creator>Wendel, M. H. ; Hilf, E. R.</creator><creatorcontrib>Wendel, M. H. ; Hilf, E. R.</creatorcontrib><description>Generalized integral moments are defined for a general class of saturating functions [ f(0)=ρ0, f(∞)=0]. They are useful as independent variables for describing surface properties or macroscopic dynamics of finite systems. Applied especially to functions of the Fermi type, analytic solutions are given in terms of a semiconverging, and of a numerically semiunstable expansion, respectively, suitable for numerical evaluation. Results are compared to the semidivergent expansion as given by Åberg, of which some properties are exhibited here, and with the exact numerical solutions known for this special example.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.526919</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>Exact sciences and technology ; Function theory, analysis ; Mathematical methods in physics ; Physics</subject><ispartof>Journal of mathematical physics, 1985-07, Vol.26 (7), p.1570-1575</ispartof><rights>American Institute of Physics</rights><rights>1986 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-3e58016312aa406f7e85d67727ef6456576416877ea4d491ecb3d163c8b697bd3</citedby><cites>FETCH-LOGICAL-c324t-3e58016312aa406f7e85d67727ef6456576416877ea4d491ecb3d163c8b697bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.526919$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,1559,27924,27925,76262</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=8580601$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wendel, M. H.</creatorcontrib><creatorcontrib>Hilf, E. R.</creatorcontrib><title>Generalized moments applied to Fermi‐type functions</title><title>Journal of mathematical physics</title><description>Generalized integral moments are defined for a general class of saturating functions [ f(0)=ρ0, f(∞)=0]. They are useful as independent variables for describing surface properties or macroscopic dynamics of finite systems. Applied especially to functions of the Fermi type, analytic solutions are given in terms of a semiconverging, and of a numerically semiunstable expansion, respectively, suitable for numerical evaluation. Results are compared to the semidivergent expansion as given by Åberg, of which some properties are exhibited here, and with the exact numerical solutions known for this special example.</description><subject>Exact sciences and technology</subject><subject>Function theory, analysis</subject><subject>Mathematical methods in physics</subject><subject>Physics</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1985</creationdate><recordtype>article</recordtype><recordid>eNp9z81KAzEUBeAgCtYq-AizcKGLqbn5n6UUW4WCG10PaeYGIvNHMgp15SP4jD6JU0a609XlwsfhHEIugS6AKn4LC8lUAcURmQE1Ra6VNMdkRiljORPGnJKzlF4pBTBCzIhcY4vR1uEDq6zpGmyHlNm-r8P4D122wtiE78-vYddj5t9aN4SuTefkxNs64cXvnZOX1f3z8iHfPK0fl3eb3HEmhpyjNBQUB2atoMprNLJSWjONXgmppFYClNEarahEAei2vBq9M1tV6G3F5-R6ynWxSymiL_sYGht3JdByP7eEcpo70quJ9jY5W_toWxfSwZuxiaIwspuJJRcGux_zX-Sf9r2LB1f2lec_jklvbg</recordid><startdate>198507</startdate><enddate>198507</enddate><creator>Wendel, M. H.</creator><creator>Hilf, E. R.</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>198507</creationdate><title>Generalized moments applied to Fermi‐type functions</title><author>Wendel, M. H. ; Hilf, E. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-3e58016312aa406f7e85d67727ef6456576416877ea4d491ecb3d163c8b697bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1985</creationdate><topic>Exact sciences and technology</topic><topic>Function theory, analysis</topic><topic>Mathematical methods in physics</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wendel, M. H.</creatorcontrib><creatorcontrib>Hilf, E. R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wendel, M. H.</au><au>Hilf, E. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized moments applied to Fermi‐type functions</atitle><jtitle>Journal of mathematical physics</jtitle><date>1985-07</date><risdate>1985</risdate><volume>26</volume><issue>7</issue><spage>1570</spage><epage>1575</epage><pages>1570-1575</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>Generalized integral moments are defined for a general class of saturating functions [ f(0)=ρ0, f(∞)=0]. They are useful as independent variables for describing surface properties or macroscopic dynamics of finite systems. Applied especially to functions of the Fermi type, analytic solutions are given in terms of a semiconverging, and of a numerically semiunstable expansion, respectively, suitable for numerical evaluation. Results are compared to the semidivergent expansion as given by Åberg, of which some properties are exhibited here, and with the exact numerical solutions known for this special example.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.526919</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 1985-07, Vol.26 (7), p.1570-1575
issn 0022-2488
1089-7658
language eng
recordid cdi_pascalfrancis_primary_8580601
source AIP Digital Archive
subjects Exact sciences and technology
Function theory, analysis
Mathematical methods in physics
Physics
title Generalized moments applied to Fermi‐type functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A12%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20moments%20applied%20to%20Fermi%E2%80%90type%20functions&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Wendel,%20M.%20H.&rft.date=1985-07&rft.volume=26&rft.issue=7&rft.spage=1570&rft.epage=1575&rft.pages=1570-1575&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.526919&rft_dat=%3Cscitation_pasca%3Ejmp%3C/scitation_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true