Quantum‐ferroelectric pressure sensor for use at low temperatures

A small, multilayer capacitance sensor (∼70 mm3) for measuring pressure over a broad range at low temperatures is described. The dielectric material is a quantum ferroelectric in the (Cd, Pb)2(Nb, Ta)2 O7 ceramic system, and the reciprocal capacitance varies linearly with pressure into the kilobar r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Rev. Sci. Instrum.; (United States) 1985-10, Vol.56 (10), p.1913-1916
Hauptverfasser: Lawless, W. N., Clark, C. F., Samara, G. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1916
container_issue 10
container_start_page 1913
container_title Rev. Sci. Instrum.; (United States)
container_volume 56
creator Lawless, W. N.
Clark, C. F.
Samara, G. A.
description A small, multilayer capacitance sensor (∼70 mm3) for measuring pressure over a broad range at low temperatures is described. The dielectric material is a quantum ferroelectric in the (Cd, Pb)2(Nb, Ta)2 O7 ceramic system, and the reciprocal capacitance varies linearly with pressure into the kilobar region. The average sensitivity of the devices studied is 151 pF/kbar, and the sensor is essentially independent of both intense magnetic fields and temperature below 10 K. A calibration for the slight magnetic field effect is given, and the sensor is dielectrically stable at helium temperatures. A one‐point pressure calibration is estimated to be reliable to
doi_str_mv 10.1063/1.1138444
format Article
fullrecord <record><control><sourceid>scitation_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_8491131</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>rsi</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-d00ebcce121eeebf580a90584596216ff82ce1e10c9a285413a1fa2d74825e773</originalsourceid><addsrcrecordid>eNqF0M1KxDAUBeAgCo6jC9-giBuFam6StulSBv9gQARdh0zmBiudpiSp4s5H8Bl9EjN00JUaCFnkS-7hEHII9Axoyc_hDIBLIcQWmQCVdV6VjG-TCaVc5GUl5C7ZC-GZplUATMjsftBdHFaf7x8WvXfYoom-MVnvMYTBYxawC85nNu0hYKZj1rrXLOKqR69jEmGf7FjdBjzYnFPyeHX5MLvJ53fXt7OLeW64ZDFfUooLYxAYIOLCFpLqmhZSFHXJoLRWsnSJQE2tmSwEcA1Ws2UKzQqsKj4lR-O_LsRGBdNENE_GdV2KrAoOZVXRhE5GZLwLwaNVvW9W2r8poGpdkQK1qSjZ49H2OhjdWq8704TvB1LUScK_LFVbl-t4pyNbJ9Oxcd2fo3_FL87_QNUvLf8CKzKO4g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quantum‐ferroelectric pressure sensor for use at low temperatures</title><source>AIP Digital Archive</source><creator>Lawless, W. N. ; Clark, C. F. ; Samara, G. A.</creator><creatorcontrib>Lawless, W. N. ; Clark, C. F. ; Samara, G. A. ; CeramPhysics, Inc., Westerville, Ohio 43081</creatorcontrib><description>A small, multilayer capacitance sensor (∼70 mm3) for measuring pressure over a broad range at low temperatures is described. The dielectric material is a quantum ferroelectric in the (Cd, Pb)2(Nb, Ta)2 O7 ceramic system, and the reciprocal capacitance varies linearly with pressure into the kilobar region. The average sensitivity of the devices studied is 151 pF/kbar, and the sensor is essentially independent of both intense magnetic fields and temperature below 10 K. A calibration for the slight magnetic field effect is given, and the sensor is dielectrically stable at helium temperatures. A one‐point pressure calibration is estimated to be reliable to &lt;±0.1%, and pressure changes in the millibar range can be resolved if certain precautions are taken.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/1.1138444</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><publisher>Woodbury, NY: American Institute of Physics</publisher><subject>440300 - Miscellaneous Instruments- (-1989) ; Analysing. Testing. Standards ; Applied sciences ; CADMIUM COMPOUNDS ; CALIBRATION ; CAPACITANCE ; CERAMICS ; CHALCOGENIDES ; CRYOGENICS ; DIELECTRIC MATERIALS ; ELECTRICAL EQUIPMENT ; ELECTRICAL PROPERTIES ; ELECTROMAGNETS ; Exact sciences and technology ; FABRICATION ; FERROELECTRIC MATERIALS ; Industrial metrology. Testing ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; LEAD COMPOUNDS ; MAGNETIC FIELDS ; MAGNETS ; MATERIALS ; Measurement of properties and materials state ; MEASURING INSTRUMENTS ; Mechanical engineering. Machine design ; Mechanical instruments, equipment and techniques ; Metals. Metallurgy ; NIOBIUM COMPOUNDS ; NIOBIUM OXIDES ; Nondestructive testing ; OTHER INSTRUMENTATION ; OXIDES ; OXYGEN COMPOUNDS ; PHYSICAL PROPERTIES ; Physics ; PRESSURE GAGES ; PRESSURE MEASUREMENT ; REFRACTORY METAL COMPOUNDS ; SENSITIVITY ; SIZE ; SUPERCONDUCTING DEVICES ; SUPERCONDUCTING MAGNETS ; TANTALUM COMPOUNDS ; TANTALUM OXIDES ; TRANSITION ELEMENT COMPOUNDS ; ULTRALOW TEMPERATURE</subject><ispartof>Rev. Sci. Instrum.; (United States), 1985-10, Vol.56 (10), p.1913-1916</ispartof><rights>American Institute of Physics</rights><rights>1986 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-d00ebcce121eeebf580a90584596216ff82ce1e10c9a285413a1fa2d74825e773</citedby><cites>FETCH-LOGICAL-c382t-d00ebcce121eeebf580a90584596216ff82ce1e10c9a285413a1fa2d74825e773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/1.1138444$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>315,781,785,886,1560,27929,27930,76395</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=8034967$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=8491131$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/5316770$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lawless, W. N.</creatorcontrib><creatorcontrib>Clark, C. F.</creatorcontrib><creatorcontrib>Samara, G. A.</creatorcontrib><creatorcontrib>CeramPhysics, Inc., Westerville, Ohio 43081</creatorcontrib><title>Quantum‐ferroelectric pressure sensor for use at low temperatures</title><title>Rev. Sci. Instrum.; (United States)</title><description>A small, multilayer capacitance sensor (∼70 mm3) for measuring pressure over a broad range at low temperatures is described. The dielectric material is a quantum ferroelectric in the (Cd, Pb)2(Nb, Ta)2 O7 ceramic system, and the reciprocal capacitance varies linearly with pressure into the kilobar region. The average sensitivity of the devices studied is 151 pF/kbar, and the sensor is essentially independent of both intense magnetic fields and temperature below 10 K. A calibration for the slight magnetic field effect is given, and the sensor is dielectrically stable at helium temperatures. A one‐point pressure calibration is estimated to be reliable to &lt;±0.1%, and pressure changes in the millibar range can be resolved if certain precautions are taken.</description><subject>440300 - Miscellaneous Instruments- (-1989)</subject><subject>Analysing. Testing. Standards</subject><subject>Applied sciences</subject><subject>CADMIUM COMPOUNDS</subject><subject>CALIBRATION</subject><subject>CAPACITANCE</subject><subject>CERAMICS</subject><subject>CHALCOGENIDES</subject><subject>CRYOGENICS</subject><subject>DIELECTRIC MATERIALS</subject><subject>ELECTRICAL EQUIPMENT</subject><subject>ELECTRICAL PROPERTIES</subject><subject>ELECTROMAGNETS</subject><subject>Exact sciences and technology</subject><subject>FABRICATION</subject><subject>FERROELECTRIC MATERIALS</subject><subject>Industrial metrology. Testing</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>LEAD COMPOUNDS</subject><subject>MAGNETIC FIELDS</subject><subject>MAGNETS</subject><subject>MATERIALS</subject><subject>Measurement of properties and materials state</subject><subject>MEASURING INSTRUMENTS</subject><subject>Mechanical engineering. Machine design</subject><subject>Mechanical instruments, equipment and techniques</subject><subject>Metals. Metallurgy</subject><subject>NIOBIUM COMPOUNDS</subject><subject>NIOBIUM OXIDES</subject><subject>Nondestructive testing</subject><subject>OTHER INSTRUMENTATION</subject><subject>OXIDES</subject><subject>OXYGEN COMPOUNDS</subject><subject>PHYSICAL PROPERTIES</subject><subject>Physics</subject><subject>PRESSURE GAGES</subject><subject>PRESSURE MEASUREMENT</subject><subject>REFRACTORY METAL COMPOUNDS</subject><subject>SENSITIVITY</subject><subject>SIZE</subject><subject>SUPERCONDUCTING DEVICES</subject><subject>SUPERCONDUCTING MAGNETS</subject><subject>TANTALUM COMPOUNDS</subject><subject>TANTALUM OXIDES</subject><subject>TRANSITION ELEMENT COMPOUNDS</subject><subject>ULTRALOW TEMPERATURE</subject><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1985</creationdate><recordtype>article</recordtype><recordid>eNqF0M1KxDAUBeAgCo6jC9-giBuFam6StulSBv9gQARdh0zmBiudpiSp4s5H8Bl9EjN00JUaCFnkS-7hEHII9Axoyc_hDIBLIcQWmQCVdV6VjG-TCaVc5GUl5C7ZC-GZplUATMjsftBdHFaf7x8WvXfYoom-MVnvMYTBYxawC85nNu0hYKZj1rrXLOKqR69jEmGf7FjdBjzYnFPyeHX5MLvJ53fXt7OLeW64ZDFfUooLYxAYIOLCFpLqmhZSFHXJoLRWsnSJQE2tmSwEcA1Ws2UKzQqsKj4lR-O_LsRGBdNENE_GdV2KrAoOZVXRhE5GZLwLwaNVvW9W2r8poGpdkQK1qSjZ49H2OhjdWq8704TvB1LUScK_LFVbl-t4pyNbJ9Oxcd2fo3_FL87_QNUvLf8CKzKO4g</recordid><startdate>198510</startdate><enddate>198510</enddate><creator>Lawless, W. N.</creator><creator>Clark, C. F.</creator><creator>Samara, G. A.</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>198510</creationdate><title>Quantum‐ferroelectric pressure sensor for use at low temperatures</title><author>Lawless, W. N. ; Clark, C. F. ; Samara, G. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-d00ebcce121eeebf580a90584596216ff82ce1e10c9a285413a1fa2d74825e773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1985</creationdate><topic>440300 - Miscellaneous Instruments- (-1989)</topic><topic>Analysing. Testing. Standards</topic><topic>Applied sciences</topic><topic>CADMIUM COMPOUNDS</topic><topic>CALIBRATION</topic><topic>CAPACITANCE</topic><topic>CERAMICS</topic><topic>CHALCOGENIDES</topic><topic>CRYOGENICS</topic><topic>DIELECTRIC MATERIALS</topic><topic>ELECTRICAL EQUIPMENT</topic><topic>ELECTRICAL PROPERTIES</topic><topic>ELECTROMAGNETS</topic><topic>Exact sciences and technology</topic><topic>FABRICATION</topic><topic>FERROELECTRIC MATERIALS</topic><topic>Industrial metrology. Testing</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>LEAD COMPOUNDS</topic><topic>MAGNETIC FIELDS</topic><topic>MAGNETS</topic><topic>MATERIALS</topic><topic>Measurement of properties and materials state</topic><topic>MEASURING INSTRUMENTS</topic><topic>Mechanical engineering. Machine design</topic><topic>Mechanical instruments, equipment and techniques</topic><topic>Metals. Metallurgy</topic><topic>NIOBIUM COMPOUNDS</topic><topic>NIOBIUM OXIDES</topic><topic>Nondestructive testing</topic><topic>OTHER INSTRUMENTATION</topic><topic>OXIDES</topic><topic>OXYGEN COMPOUNDS</topic><topic>PHYSICAL PROPERTIES</topic><topic>Physics</topic><topic>PRESSURE GAGES</topic><topic>PRESSURE MEASUREMENT</topic><topic>REFRACTORY METAL COMPOUNDS</topic><topic>SENSITIVITY</topic><topic>SIZE</topic><topic>SUPERCONDUCTING DEVICES</topic><topic>SUPERCONDUCTING MAGNETS</topic><topic>TANTALUM COMPOUNDS</topic><topic>TANTALUM OXIDES</topic><topic>TRANSITION ELEMENT COMPOUNDS</topic><topic>ULTRALOW TEMPERATURE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lawless, W. N.</creatorcontrib><creatorcontrib>Clark, C. F.</creatorcontrib><creatorcontrib>Samara, G. A.</creatorcontrib><creatorcontrib>CeramPhysics, Inc., Westerville, Ohio 43081</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Rev. Sci. Instrum.; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lawless, W. N.</au><au>Clark, C. F.</au><au>Samara, G. A.</au><aucorp>CeramPhysics, Inc., Westerville, Ohio 43081</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum‐ferroelectric pressure sensor for use at low temperatures</atitle><jtitle>Rev. Sci. Instrum.; (United States)</jtitle><date>1985-10</date><risdate>1985</risdate><volume>56</volume><issue>10</issue><spage>1913</spage><epage>1916</epage><pages>1913-1916</pages><issn>0034-6748</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>A small, multilayer capacitance sensor (∼70 mm3) for measuring pressure over a broad range at low temperatures is described. The dielectric material is a quantum ferroelectric in the (Cd, Pb)2(Nb, Ta)2 O7 ceramic system, and the reciprocal capacitance varies linearly with pressure into the kilobar region. The average sensitivity of the devices studied is 151 pF/kbar, and the sensor is essentially independent of both intense magnetic fields and temperature below 10 K. A calibration for the slight magnetic field effect is given, and the sensor is dielectrically stable at helium temperatures. A one‐point pressure calibration is estimated to be reliable to &lt;±0.1%, and pressure changes in the millibar range can be resolved if certain precautions are taken.</abstract><cop>Woodbury, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.1138444</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0034-6748
ispartof Rev. Sci. Instrum.; (United States), 1985-10, Vol.56 (10), p.1913-1916
issn 0034-6748
1089-7623
language eng
recordid cdi_pascalfrancis_primary_8491131
source AIP Digital Archive
subjects 440300 - Miscellaneous Instruments- (-1989)
Analysing. Testing. Standards
Applied sciences
CADMIUM COMPOUNDS
CALIBRATION
CAPACITANCE
CERAMICS
CHALCOGENIDES
CRYOGENICS
DIELECTRIC MATERIALS
ELECTRICAL EQUIPMENT
ELECTRICAL PROPERTIES
ELECTROMAGNETS
Exact sciences and technology
FABRICATION
FERROELECTRIC MATERIALS
Industrial metrology. Testing
Instruments, apparatus, components and techniques common to several branches of physics and astronomy
LEAD COMPOUNDS
MAGNETIC FIELDS
MAGNETS
MATERIALS
Measurement of properties and materials state
MEASURING INSTRUMENTS
Mechanical engineering. Machine design
Mechanical instruments, equipment and techniques
Metals. Metallurgy
NIOBIUM COMPOUNDS
NIOBIUM OXIDES
Nondestructive testing
OTHER INSTRUMENTATION
OXIDES
OXYGEN COMPOUNDS
PHYSICAL PROPERTIES
Physics
PRESSURE GAGES
PRESSURE MEASUREMENT
REFRACTORY METAL COMPOUNDS
SENSITIVITY
SIZE
SUPERCONDUCTING DEVICES
SUPERCONDUCTING MAGNETS
TANTALUM COMPOUNDS
TANTALUM OXIDES
TRANSITION ELEMENT COMPOUNDS
ULTRALOW TEMPERATURE
title Quantum‐ferroelectric pressure sensor for use at low temperatures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T13%3A44%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%E2%80%90ferroelectric%20pressure%20sensor%20for%20use%20at%20low%20temperatures&rft.jtitle=Rev.%20Sci.%20Instrum.;%20(United%20States)&rft.au=Lawless,%20W.%20N.&rft.aucorp=CeramPhysics,%20Inc.,%20Westerville,%20Ohio%2043081&rft.date=1985-10&rft.volume=56&rft.issue=10&rft.spage=1913&rft.epage=1916&rft.pages=1913-1916&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/1.1138444&rft_dat=%3Cscitation_pasca%3Ersi%3C/scitation_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true