Quantum‐ferroelectric pressure sensor for use at low temperatures
A small, multilayer capacitance sensor (∼70 mm3) for measuring pressure over a broad range at low temperatures is described. The dielectric material is a quantum ferroelectric in the (Cd, Pb)2(Nb, Ta)2 O7 ceramic system, and the reciprocal capacitance varies linearly with pressure into the kilobar r...
Gespeichert in:
Veröffentlicht in: | Rev. Sci. Instrum.; (United States) 1985-10, Vol.56 (10), p.1913-1916 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1916 |
---|---|
container_issue | 10 |
container_start_page | 1913 |
container_title | Rev. Sci. Instrum.; (United States) |
container_volume | 56 |
creator | Lawless, W. N. Clark, C. F. Samara, G. A. |
description | A small, multilayer capacitance sensor (∼70 mm3) for measuring pressure over a broad range at low temperatures is described. The dielectric material is a quantum ferroelectric in the (Cd, Pb)2(Nb, Ta)2 O7 ceramic system, and the reciprocal capacitance varies linearly with pressure into the kilobar region. The average sensitivity of the devices studied is 151 pF/kbar, and the sensor is essentially independent of both intense magnetic fields and temperature below 10 K. A calibration for the slight magnetic field effect is given, and the sensor is dielectrically stable at helium temperatures. A one‐point pressure calibration is estimated to be reliable to |
doi_str_mv | 10.1063/1.1138444 |
format | Article |
fullrecord | <record><control><sourceid>scitation_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_8491131</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>rsi</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-d00ebcce121eeebf580a90584596216ff82ce1e10c9a285413a1fa2d74825e773</originalsourceid><addsrcrecordid>eNqF0M1KxDAUBeAgCo6jC9-giBuFam6StulSBv9gQARdh0zmBiudpiSp4s5H8Bl9EjN00JUaCFnkS-7hEHII9Axoyc_hDIBLIcQWmQCVdV6VjG-TCaVc5GUl5C7ZC-GZplUATMjsftBdHFaf7x8WvXfYoom-MVnvMYTBYxawC85nNu0hYKZj1rrXLOKqR69jEmGf7FjdBjzYnFPyeHX5MLvJ53fXt7OLeW64ZDFfUooLYxAYIOLCFpLqmhZSFHXJoLRWsnSJQE2tmSwEcA1Ws2UKzQqsKj4lR-O_LsRGBdNENE_GdV2KrAoOZVXRhE5GZLwLwaNVvW9W2r8poGpdkQK1qSjZ49H2OhjdWq8704TvB1LUScK_LFVbl-t4pyNbJ9Oxcd2fo3_FL87_QNUvLf8CKzKO4g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quantum‐ferroelectric pressure sensor for use at low temperatures</title><source>AIP Digital Archive</source><creator>Lawless, W. N. ; Clark, C. F. ; Samara, G. A.</creator><creatorcontrib>Lawless, W. N. ; Clark, C. F. ; Samara, G. A. ; CeramPhysics, Inc., Westerville, Ohio 43081</creatorcontrib><description>A small, multilayer capacitance sensor (∼70 mm3) for measuring pressure over a broad range at low temperatures is described. The dielectric material is a quantum ferroelectric in the (Cd, Pb)2(Nb, Ta)2 O7 ceramic system, and the reciprocal capacitance varies linearly with pressure into the kilobar region. The average sensitivity of the devices studied is 151 pF/kbar, and the sensor is essentially independent of both intense magnetic fields and temperature below 10 K. A calibration for the slight magnetic field effect is given, and the sensor is dielectrically stable at helium temperatures. A one‐point pressure calibration is estimated to be reliable to <±0.1%, and pressure changes in the millibar range can be resolved if certain precautions are taken.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/1.1138444</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><publisher>Woodbury, NY: American Institute of Physics</publisher><subject>440300 - Miscellaneous Instruments- (-1989) ; Analysing. Testing. Standards ; Applied sciences ; CADMIUM COMPOUNDS ; CALIBRATION ; CAPACITANCE ; CERAMICS ; CHALCOGENIDES ; CRYOGENICS ; DIELECTRIC MATERIALS ; ELECTRICAL EQUIPMENT ; ELECTRICAL PROPERTIES ; ELECTROMAGNETS ; Exact sciences and technology ; FABRICATION ; FERROELECTRIC MATERIALS ; Industrial metrology. Testing ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; LEAD COMPOUNDS ; MAGNETIC FIELDS ; MAGNETS ; MATERIALS ; Measurement of properties and materials state ; MEASURING INSTRUMENTS ; Mechanical engineering. Machine design ; Mechanical instruments, equipment and techniques ; Metals. Metallurgy ; NIOBIUM COMPOUNDS ; NIOBIUM OXIDES ; Nondestructive testing ; OTHER INSTRUMENTATION ; OXIDES ; OXYGEN COMPOUNDS ; PHYSICAL PROPERTIES ; Physics ; PRESSURE GAGES ; PRESSURE MEASUREMENT ; REFRACTORY METAL COMPOUNDS ; SENSITIVITY ; SIZE ; SUPERCONDUCTING DEVICES ; SUPERCONDUCTING MAGNETS ; TANTALUM COMPOUNDS ; TANTALUM OXIDES ; TRANSITION ELEMENT COMPOUNDS ; ULTRALOW TEMPERATURE</subject><ispartof>Rev. Sci. Instrum.; (United States), 1985-10, Vol.56 (10), p.1913-1916</ispartof><rights>American Institute of Physics</rights><rights>1986 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-d00ebcce121eeebf580a90584596216ff82ce1e10c9a285413a1fa2d74825e773</citedby><cites>FETCH-LOGICAL-c382t-d00ebcce121eeebf580a90584596216ff82ce1e10c9a285413a1fa2d74825e773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/1.1138444$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>315,781,785,886,1560,27929,27930,76395</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=8034967$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=8491131$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/5316770$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lawless, W. N.</creatorcontrib><creatorcontrib>Clark, C. F.</creatorcontrib><creatorcontrib>Samara, G. A.</creatorcontrib><creatorcontrib>CeramPhysics, Inc., Westerville, Ohio 43081</creatorcontrib><title>Quantum‐ferroelectric pressure sensor for use at low temperatures</title><title>Rev. Sci. Instrum.; (United States)</title><description>A small, multilayer capacitance sensor (∼70 mm3) for measuring pressure over a broad range at low temperatures is described. The dielectric material is a quantum ferroelectric in the (Cd, Pb)2(Nb, Ta)2 O7 ceramic system, and the reciprocal capacitance varies linearly with pressure into the kilobar region. The average sensitivity of the devices studied is 151 pF/kbar, and the sensor is essentially independent of both intense magnetic fields and temperature below 10 K. A calibration for the slight magnetic field effect is given, and the sensor is dielectrically stable at helium temperatures. A one‐point pressure calibration is estimated to be reliable to <±0.1%, and pressure changes in the millibar range can be resolved if certain precautions are taken.</description><subject>440300 - Miscellaneous Instruments- (-1989)</subject><subject>Analysing. Testing. Standards</subject><subject>Applied sciences</subject><subject>CADMIUM COMPOUNDS</subject><subject>CALIBRATION</subject><subject>CAPACITANCE</subject><subject>CERAMICS</subject><subject>CHALCOGENIDES</subject><subject>CRYOGENICS</subject><subject>DIELECTRIC MATERIALS</subject><subject>ELECTRICAL EQUIPMENT</subject><subject>ELECTRICAL PROPERTIES</subject><subject>ELECTROMAGNETS</subject><subject>Exact sciences and technology</subject><subject>FABRICATION</subject><subject>FERROELECTRIC MATERIALS</subject><subject>Industrial metrology. Testing</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>LEAD COMPOUNDS</subject><subject>MAGNETIC FIELDS</subject><subject>MAGNETS</subject><subject>MATERIALS</subject><subject>Measurement of properties and materials state</subject><subject>MEASURING INSTRUMENTS</subject><subject>Mechanical engineering. Machine design</subject><subject>Mechanical instruments, equipment and techniques</subject><subject>Metals. Metallurgy</subject><subject>NIOBIUM COMPOUNDS</subject><subject>NIOBIUM OXIDES</subject><subject>Nondestructive testing</subject><subject>OTHER INSTRUMENTATION</subject><subject>OXIDES</subject><subject>OXYGEN COMPOUNDS</subject><subject>PHYSICAL PROPERTIES</subject><subject>Physics</subject><subject>PRESSURE GAGES</subject><subject>PRESSURE MEASUREMENT</subject><subject>REFRACTORY METAL COMPOUNDS</subject><subject>SENSITIVITY</subject><subject>SIZE</subject><subject>SUPERCONDUCTING DEVICES</subject><subject>SUPERCONDUCTING MAGNETS</subject><subject>TANTALUM COMPOUNDS</subject><subject>TANTALUM OXIDES</subject><subject>TRANSITION ELEMENT COMPOUNDS</subject><subject>ULTRALOW TEMPERATURE</subject><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1985</creationdate><recordtype>article</recordtype><recordid>eNqF0M1KxDAUBeAgCo6jC9-giBuFam6StulSBv9gQARdh0zmBiudpiSp4s5H8Bl9EjN00JUaCFnkS-7hEHII9Axoyc_hDIBLIcQWmQCVdV6VjG-TCaVc5GUl5C7ZC-GZplUATMjsftBdHFaf7x8WvXfYoom-MVnvMYTBYxawC85nNu0hYKZj1rrXLOKqR69jEmGf7FjdBjzYnFPyeHX5MLvJ53fXt7OLeW64ZDFfUooLYxAYIOLCFpLqmhZSFHXJoLRWsnSJQE2tmSwEcA1Ws2UKzQqsKj4lR-O_LsRGBdNENE_GdV2KrAoOZVXRhE5GZLwLwaNVvW9W2r8poGpdkQK1qSjZ49H2OhjdWq8704TvB1LUScK_LFVbl-t4pyNbJ9Oxcd2fo3_FL87_QNUvLf8CKzKO4g</recordid><startdate>198510</startdate><enddate>198510</enddate><creator>Lawless, W. N.</creator><creator>Clark, C. F.</creator><creator>Samara, G. A.</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>198510</creationdate><title>Quantum‐ferroelectric pressure sensor for use at low temperatures</title><author>Lawless, W. N. ; Clark, C. F. ; Samara, G. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-d00ebcce121eeebf580a90584596216ff82ce1e10c9a285413a1fa2d74825e773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1985</creationdate><topic>440300 - Miscellaneous Instruments- (-1989)</topic><topic>Analysing. Testing. Standards</topic><topic>Applied sciences</topic><topic>CADMIUM COMPOUNDS</topic><topic>CALIBRATION</topic><topic>CAPACITANCE</topic><topic>CERAMICS</topic><topic>CHALCOGENIDES</topic><topic>CRYOGENICS</topic><topic>DIELECTRIC MATERIALS</topic><topic>ELECTRICAL EQUIPMENT</topic><topic>ELECTRICAL PROPERTIES</topic><topic>ELECTROMAGNETS</topic><topic>Exact sciences and technology</topic><topic>FABRICATION</topic><topic>FERROELECTRIC MATERIALS</topic><topic>Industrial metrology. Testing</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>LEAD COMPOUNDS</topic><topic>MAGNETIC FIELDS</topic><topic>MAGNETS</topic><topic>MATERIALS</topic><topic>Measurement of properties and materials state</topic><topic>MEASURING INSTRUMENTS</topic><topic>Mechanical engineering. Machine design</topic><topic>Mechanical instruments, equipment and techniques</topic><topic>Metals. Metallurgy</topic><topic>NIOBIUM COMPOUNDS</topic><topic>NIOBIUM OXIDES</topic><topic>Nondestructive testing</topic><topic>OTHER INSTRUMENTATION</topic><topic>OXIDES</topic><topic>OXYGEN COMPOUNDS</topic><topic>PHYSICAL PROPERTIES</topic><topic>Physics</topic><topic>PRESSURE GAGES</topic><topic>PRESSURE MEASUREMENT</topic><topic>REFRACTORY METAL COMPOUNDS</topic><topic>SENSITIVITY</topic><topic>SIZE</topic><topic>SUPERCONDUCTING DEVICES</topic><topic>SUPERCONDUCTING MAGNETS</topic><topic>TANTALUM COMPOUNDS</topic><topic>TANTALUM OXIDES</topic><topic>TRANSITION ELEMENT COMPOUNDS</topic><topic>ULTRALOW TEMPERATURE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lawless, W. N.</creatorcontrib><creatorcontrib>Clark, C. F.</creatorcontrib><creatorcontrib>Samara, G. A.</creatorcontrib><creatorcontrib>CeramPhysics, Inc., Westerville, Ohio 43081</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Rev. Sci. Instrum.; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lawless, W. N.</au><au>Clark, C. F.</au><au>Samara, G. A.</au><aucorp>CeramPhysics, Inc., Westerville, Ohio 43081</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum‐ferroelectric pressure sensor for use at low temperatures</atitle><jtitle>Rev. Sci. Instrum.; (United States)</jtitle><date>1985-10</date><risdate>1985</risdate><volume>56</volume><issue>10</issue><spage>1913</spage><epage>1916</epage><pages>1913-1916</pages><issn>0034-6748</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>A small, multilayer capacitance sensor (∼70 mm3) for measuring pressure over a broad range at low temperatures is described. The dielectric material is a quantum ferroelectric in the (Cd, Pb)2(Nb, Ta)2 O7 ceramic system, and the reciprocal capacitance varies linearly with pressure into the kilobar region. The average sensitivity of the devices studied is 151 pF/kbar, and the sensor is essentially independent of both intense magnetic fields and temperature below 10 K. A calibration for the slight magnetic field effect is given, and the sensor is dielectrically stable at helium temperatures. A one‐point pressure calibration is estimated to be reliable to <±0.1%, and pressure changes in the millibar range can be resolved if certain precautions are taken.</abstract><cop>Woodbury, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.1138444</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0034-6748 |
ispartof | Rev. Sci. Instrum.; (United States), 1985-10, Vol.56 (10), p.1913-1916 |
issn | 0034-6748 1089-7623 |
language | eng |
recordid | cdi_pascalfrancis_primary_8491131 |
source | AIP Digital Archive |
subjects | 440300 - Miscellaneous Instruments- (-1989) Analysing. Testing. Standards Applied sciences CADMIUM COMPOUNDS CALIBRATION CAPACITANCE CERAMICS CHALCOGENIDES CRYOGENICS DIELECTRIC MATERIALS ELECTRICAL EQUIPMENT ELECTRICAL PROPERTIES ELECTROMAGNETS Exact sciences and technology FABRICATION FERROELECTRIC MATERIALS Industrial metrology. Testing Instruments, apparatus, components and techniques common to several branches of physics and astronomy LEAD COMPOUNDS MAGNETIC FIELDS MAGNETS MATERIALS Measurement of properties and materials state MEASURING INSTRUMENTS Mechanical engineering. Machine design Mechanical instruments, equipment and techniques Metals. Metallurgy NIOBIUM COMPOUNDS NIOBIUM OXIDES Nondestructive testing OTHER INSTRUMENTATION OXIDES OXYGEN COMPOUNDS PHYSICAL PROPERTIES Physics PRESSURE GAGES PRESSURE MEASUREMENT REFRACTORY METAL COMPOUNDS SENSITIVITY SIZE SUPERCONDUCTING DEVICES SUPERCONDUCTING MAGNETS TANTALUM COMPOUNDS TANTALUM OXIDES TRANSITION ELEMENT COMPOUNDS ULTRALOW TEMPERATURE |
title | Quantum‐ferroelectric pressure sensor for use at low temperatures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T13%3A44%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%E2%80%90ferroelectric%20pressure%20sensor%20for%20use%20at%20low%20temperatures&rft.jtitle=Rev.%20Sci.%20Instrum.;%20(United%20States)&rft.au=Lawless,%20W.%20N.&rft.aucorp=CeramPhysics,%20Inc.,%20Westerville,%20Ohio%2043081&rft.date=1985-10&rft.volume=56&rft.issue=10&rft.spage=1913&rft.epage=1916&rft.pages=1913-1916&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/1.1138444&rft_dat=%3Cscitation_pasca%3Ersi%3C/scitation_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |