Real methods in twistor theory
This paper is a self-contained account of an approach to Penrose's twistor theory based on real methods and Dolbeault cohomology. Topics covered include the Penrose transform for linear fields in self-dual spaces and for Yang-Mills fields, propagation from Cauchy data, and the twistor transform...
Gespeichert in:
Veröffentlicht in: | Classical and quantum gravity 1985-05, Vol.2 (3), p.257-291 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 291 |
---|---|
container_issue | 3 |
container_start_page | 257 |
container_title | Classical and quantum gravity |
container_volume | 2 |
creator | Woodhouse, N M J |
description | This paper is a self-contained account of an approach to Penrose's twistor theory based on real methods and Dolbeault cohomology. Topics covered include the Penrose transform for linear fields in self-dual spaces and for Yang-Mills fields, propagation from Cauchy data, and the twistor transform. |
doi_str_mv | 10.1088/0264-9381/2/3/006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_8469013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>24764559</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-21a39acd12bb1362a1189cfc9599eddf6cd4704a093d20cdd3d7bf92bc133e0f3</originalsourceid><addsrcrecordid>eNp1UMtKw0AUHUTBGv0AN5KFiAtj7sxNJ5mlFF9QEETXw2QeNJJ24kyK9O-b0NJNcXUX53HPOYRcU3ikUFU5MF5kAiuasxxzAH5CJhQ5zThW7JRMDvg5uYjxB4DSirIJufm0qk2Xtl94E9NmlfZ_Tex9SPuF9WFzSc6caqO92t-EfL88f83esvnH6_vsaZ5pLLHPGFUolDaU1fXwlanBXWinxVQIa4zj2hQlFAoEGgbaGDRl7QSrNUW04DAhdzvfLvjftY29XDZR27ZVK-vXUbKi5MV0KgYi3RF18DEG62QXmqUKG0lBjkvIsakcm0omUQ5LDJrbvbmKWrUuqJVu4kFYFVzAkCMh9zta47sDeOQmOzPGfTim_h9gCxqndlg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>24764559</pqid></control><display><type>article</type><title>Real methods in twistor theory</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Woodhouse, N M J</creator><creatorcontrib>Woodhouse, N M J</creatorcontrib><description>This paper is a self-contained account of an approach to Penrose's twistor theory based on real methods and Dolbeault cohomology. Topics covered include the Penrose transform for linear fields in self-dual spaces and for Yang-Mills fields, propagation from Cauchy data, and the twistor transform.</description><identifier>ISSN: 0264-9381</identifier><identifier>EISSN: 1361-6382</identifier><identifier>DOI: 10.1088/0264-9381/2/3/006</identifier><identifier>CODEN: CQGRDG</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Classical general relativity ; Exact sciences and technology ; General relativity and gravitation ; Physics</subject><ispartof>Classical and quantum gravity, 1985-05, Vol.2 (3), p.257-291</ispartof><rights>1986 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-21a39acd12bb1362a1189cfc9599eddf6cd4704a093d20cdd3d7bf92bc133e0f3</citedby><cites>FETCH-LOGICAL-c373t-21a39acd12bb1362a1189cfc9599eddf6cd4704a093d20cdd3d7bf92bc133e0f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0264-9381/2/3/006/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>315,782,786,27931,27932,53837,53917</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=8469013$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Woodhouse, N M J</creatorcontrib><title>Real methods in twistor theory</title><title>Classical and quantum gravity</title><description>This paper is a self-contained account of an approach to Penrose's twistor theory based on real methods and Dolbeault cohomology. Topics covered include the Penrose transform for linear fields in self-dual spaces and for Yang-Mills fields, propagation from Cauchy data, and the twistor transform.</description><subject>Classical general relativity</subject><subject>Exact sciences and technology</subject><subject>General relativity and gravitation</subject><subject>Physics</subject><issn>0264-9381</issn><issn>1361-6382</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1985</creationdate><recordtype>article</recordtype><recordid>eNp1UMtKw0AUHUTBGv0AN5KFiAtj7sxNJ5mlFF9QEETXw2QeNJJ24kyK9O-b0NJNcXUX53HPOYRcU3ikUFU5MF5kAiuasxxzAH5CJhQ5zThW7JRMDvg5uYjxB4DSirIJufm0qk2Xtl94E9NmlfZ_Tex9SPuF9WFzSc6caqO92t-EfL88f83esvnH6_vsaZ5pLLHPGFUolDaU1fXwlanBXWinxVQIa4zj2hQlFAoEGgbaGDRl7QSrNUW04DAhdzvfLvjftY29XDZR27ZVK-vXUbKi5MV0KgYi3RF18DEG62QXmqUKG0lBjkvIsakcm0omUQ5LDJrbvbmKWrUuqJVu4kFYFVzAkCMh9zta47sDeOQmOzPGfTim_h9gCxqndlg</recordid><startdate>19850501</startdate><enddate>19850501</enddate><creator>Woodhouse, N M J</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19850501</creationdate><title>Real methods in twistor theory</title><author>Woodhouse, N M J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-21a39acd12bb1362a1189cfc9599eddf6cd4704a093d20cdd3d7bf92bc133e0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1985</creationdate><topic>Classical general relativity</topic><topic>Exact sciences and technology</topic><topic>General relativity and gravitation</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Woodhouse, N M J</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Classical and quantum gravity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Woodhouse, N M J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real methods in twistor theory</atitle><jtitle>Classical and quantum gravity</jtitle><date>1985-05-01</date><risdate>1985</risdate><volume>2</volume><issue>3</issue><spage>257</spage><epage>291</epage><pages>257-291</pages><issn>0264-9381</issn><eissn>1361-6382</eissn><coden>CQGRDG</coden><abstract>This paper is a self-contained account of an approach to Penrose's twistor theory based on real methods and Dolbeault cohomology. Topics covered include the Penrose transform for linear fields in self-dual spaces and for Yang-Mills fields, propagation from Cauchy data, and the twistor transform.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/0264-9381/2/3/006</doi><tpages>35</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0264-9381 |
ispartof | Classical and quantum gravity, 1985-05, Vol.2 (3), p.257-291 |
issn | 0264-9381 1361-6382 |
language | eng |
recordid | cdi_pascalfrancis_primary_8469013 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Classical general relativity Exact sciences and technology General relativity and gravitation Physics |
title | Real methods in twistor theory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T00%3A54%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real%20methods%20in%20twistor%20theory&rft.jtitle=Classical%20and%20quantum%20gravity&rft.au=Woodhouse,%20N%20M%20J&rft.date=1985-05-01&rft.volume=2&rft.issue=3&rft.spage=257&rft.epage=291&rft.pages=257-291&rft.issn=0264-9381&rft.eissn=1361-6382&rft.coden=CQGRDG&rft_id=info:doi/10.1088/0264-9381/2/3/006&rft_dat=%3Cproquest_pasca%3E24764559%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=24764559&rft_id=info:pmid/&rfr_iscdi=true |