ACCURATE IMPLEMENTATION OF LINE AND DISTRIBUTED SOURCES IN HEAT CONDUCTION PROBLEMS BY THE BOUNDARY-ELEMENT METHOD
This article is concerned with the boundary-element analysis of two- and three-dimensional problems of nonlinear heat conduction. Line and distributed heat sources within the domain are implemented with no need for domain discretization. The boundary integrals developed in 2-D analysis are evaluated...
Gespeichert in:
Veröffentlicht in: | Numerical heat transfer. Part B, Fundamentals Fundamentals, 2000-12, Vol.38 (4), p.423-447 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 447 |
---|---|
container_issue | 4 |
container_start_page | 423 |
container_title | Numerical heat transfer. Part B, Fundamentals |
container_volume | 38 |
creator | KARAMI, G HEMATIYAN, M. R |
description | This article is concerned with the boundary-element analysis of two- and three-dimensional problems of nonlinear heat conduction. Line and distributed heat sources within the domain are implemented with no need for domain discretization. The boundary integrals developed in 2-D analysis are evaluated analytically, so no numerical integration is required. This enhances the accuracy of the solutions, especially when the geometric boundary of the domain is complex or the body is thin, or in cases where solution in the vicinity of the boundary is required. Accuracy of analysis with analytical integration in comparison with numerical integration is highlighted by an example, and the efficiency of the algorithms for implementation of various kinds of heat sources in 2-D and 3-D are explored through several other examples. |
doi_str_mv | 10.1080/104077900459220 |
format | Article |
fullrecord | <record><control><sourceid>pascalfrancis_infor</sourceid><recordid>TN_cdi_pascalfrancis_primary_838901</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>838901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-1e9d6a88bf861843499fe65de3178ad512999611f2105f0857fc264e935a099c3</originalsourceid><addsrcrecordid>eNqFkM1Lw0AQxYMoWKtnrwueY3ez-dj1lo-tCaTZkmwOPYU1yUIlbcqmoP73pkY9FMS5zMB7vzfDGMY9go8IErhA0IaeRyG0HWpZ8MKYIcdCJnQt93KcR9U8ydfGzTC8wrFsbM8M7YdhmfuCgWS1TtmKZcIXCc8AX4I0yRjwswhESSHyJCgFi0DByzxkBUgyEDNfgJBnURl-IeucB2NEAYINEDEDAS-zyM83JpuCwYqJmEe3xpWS3dDeffe5US6ZCGMz5c9J6KdmjV37aKKWNq4k5EURF5HxWEpV6zpNi5FHZOMgi1LqIqQsBB0FieOp2nLtlmJHQkprPDcWU26t-2HQraoOeruT-qNCsDq9rDp72Ug8TMRBDrXslJb7ejv8YgQTCtHoeppc273q9U6-9bprqqP86Hr9g-C_Vzj_wmdMdXw_4k_iaoRQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>ACCURATE IMPLEMENTATION OF LINE AND DISTRIBUTED SOURCES IN HEAT CONDUCTION PROBLEMS BY THE BOUNDARY-ELEMENT METHOD</title><source>Taylor & Francis:Master (3349 titles)</source><creator>KARAMI, G ; HEMATIYAN, M. R</creator><creatorcontrib>KARAMI, G ; HEMATIYAN, M. R</creatorcontrib><description>This article is concerned with the boundary-element analysis of two- and three-dimensional problems of nonlinear heat conduction. Line and distributed heat sources within the domain are implemented with no need for domain discretization. The boundary integrals developed in 2-D analysis are evaluated analytically, so no numerical integration is required. This enhances the accuracy of the solutions, especially when the geometric boundary of the domain is complex or the body is thin, or in cases where solution in the vicinity of the boundary is required. Accuracy of analysis with analytical integration in comparison with numerical integration is highlighted by an example, and the efficiency of the algorithms for implementation of various kinds of heat sources in 2-D and 3-D are explored through several other examples.</description><identifier>ISSN: 1040-7790</identifier><identifier>EISSN: 1521-0626</identifier><identifier>DOI: 10.1080/104077900459220</identifier><identifier>CODEN: NHBFEE</identifier><language>eng</language><publisher>Philadelphia, PA: Informa UK Ltd</publisher><subject>Analytical and numerical techniques ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Heat conduction ; Heat transfer ; Physics</subject><ispartof>Numerical heat transfer. Part B, Fundamentals, 2000-12, Vol.38 (4), p.423-447</ispartof><rights>Copyright Taylor & Francis Group, LLC 2000</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-1e9d6a88bf861843499fe65de3178ad512999611f2105f0857fc264e935a099c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/104077900459220$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/104077900459220$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,59647,60436</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=838901$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>KARAMI, G</creatorcontrib><creatorcontrib>HEMATIYAN, M. R</creatorcontrib><title>ACCURATE IMPLEMENTATION OF LINE AND DISTRIBUTED SOURCES IN HEAT CONDUCTION PROBLEMS BY THE BOUNDARY-ELEMENT METHOD</title><title>Numerical heat transfer. Part B, Fundamentals</title><description>This article is concerned with the boundary-element analysis of two- and three-dimensional problems of nonlinear heat conduction. Line and distributed heat sources within the domain are implemented with no need for domain discretization. The boundary integrals developed in 2-D analysis are evaluated analytically, so no numerical integration is required. This enhances the accuracy of the solutions, especially when the geometric boundary of the domain is complex or the body is thin, or in cases where solution in the vicinity of the boundary is required. Accuracy of analysis with analytical integration in comparison with numerical integration is highlighted by an example, and the efficiency of the algorithms for implementation of various kinds of heat sources in 2-D and 3-D are explored through several other examples.</description><subject>Analytical and numerical techniques</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Heat conduction</subject><subject>Heat transfer</subject><subject>Physics</subject><issn>1040-7790</issn><issn>1521-0626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkM1Lw0AQxYMoWKtnrwueY3ez-dj1lo-tCaTZkmwOPYU1yUIlbcqmoP73pkY9FMS5zMB7vzfDGMY9go8IErhA0IaeRyG0HWpZ8MKYIcdCJnQt93KcR9U8ydfGzTC8wrFsbM8M7YdhmfuCgWS1TtmKZcIXCc8AX4I0yRjwswhESSHyJCgFi0DByzxkBUgyEDNfgJBnURl-IeucB2NEAYINEDEDAS-zyM83JpuCwYqJmEe3xpWS3dDeffe5US6ZCGMz5c9J6KdmjV37aKKWNq4k5EURF5HxWEpV6zpNi5FHZOMgi1LqIqQsBB0FieOp2nLtlmJHQkprPDcWU26t-2HQraoOeruT-qNCsDq9rDp72Ug8TMRBDrXslJb7ejv8YgQTCtHoeppc273q9U6-9bprqqP86Hr9g-C_Vzj_wmdMdXw_4k_iaoRQ</recordid><startdate>20001201</startdate><enddate>20001201</enddate><creator>KARAMI, G</creator><creator>HEMATIYAN, M. R</creator><general>Informa UK Ltd</general><general>Taylor & Francis</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20001201</creationdate><title>ACCURATE IMPLEMENTATION OF LINE AND DISTRIBUTED SOURCES IN HEAT CONDUCTION PROBLEMS BY THE BOUNDARY-ELEMENT METHOD</title><author>KARAMI, G ; HEMATIYAN, M. R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-1e9d6a88bf861843499fe65de3178ad512999611f2105f0857fc264e935a099c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Analytical and numerical techniques</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Heat conduction</topic><topic>Heat transfer</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KARAMI, G</creatorcontrib><creatorcontrib>HEMATIYAN, M. R</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Numerical heat transfer. Part B, Fundamentals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KARAMI, G</au><au>HEMATIYAN, M. R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ACCURATE IMPLEMENTATION OF LINE AND DISTRIBUTED SOURCES IN HEAT CONDUCTION PROBLEMS BY THE BOUNDARY-ELEMENT METHOD</atitle><jtitle>Numerical heat transfer. Part B, Fundamentals</jtitle><date>2000-12-01</date><risdate>2000</risdate><volume>38</volume><issue>4</issue><spage>423</spage><epage>447</epage><pages>423-447</pages><issn>1040-7790</issn><eissn>1521-0626</eissn><coden>NHBFEE</coden><abstract>This article is concerned with the boundary-element analysis of two- and three-dimensional problems of nonlinear heat conduction. Line and distributed heat sources within the domain are implemented with no need for domain discretization. The boundary integrals developed in 2-D analysis are evaluated analytically, so no numerical integration is required. This enhances the accuracy of the solutions, especially when the geometric boundary of the domain is complex or the body is thin, or in cases where solution in the vicinity of the boundary is required. Accuracy of analysis with analytical integration in comparison with numerical integration is highlighted by an example, and the efficiency of the algorithms for implementation of various kinds of heat sources in 2-D and 3-D are explored through several other examples.</abstract><cop>Philadelphia, PA</cop><pub>Informa UK Ltd</pub><doi>10.1080/104077900459220</doi><tpages>25</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1040-7790 |
ispartof | Numerical heat transfer. Part B, Fundamentals, 2000-12, Vol.38 (4), p.423-447 |
issn | 1040-7790 1521-0626 |
language | eng |
recordid | cdi_pascalfrancis_primary_838901 |
source | Taylor & Francis:Master (3349 titles) |
subjects | Analytical and numerical techniques Exact sciences and technology Fundamental areas of phenomenology (including applications) Heat conduction Heat transfer Physics |
title | ACCURATE IMPLEMENTATION OF LINE AND DISTRIBUTED SOURCES IN HEAT CONDUCTION PROBLEMS BY THE BOUNDARY-ELEMENT METHOD |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A57%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ACCURATE%20IMPLEMENTATION%20OF%20LINE%20AND%20DISTRIBUTED%20SOURCES%20IN%20HEAT%20CONDUCTION%20PROBLEMS%20BY%20THE%20BOUNDARY-ELEMENT%20METHOD&rft.jtitle=Numerical%20heat%20transfer.%20Part%20B,%20Fundamentals&rft.au=KARAMI,%20G&rft.date=2000-12-01&rft.volume=38&rft.issue=4&rft.spage=423&rft.epage=447&rft.pages=423-447&rft.issn=1040-7790&rft.eissn=1521-0626&rft.coden=NHBFEE&rft_id=info:doi/10.1080/104077900459220&rft_dat=%3Cpascalfrancis_infor%3E838901%3C/pascalfrancis_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |