Universal HSPICE macromodel for giant magnetoresistance memory bits

Nonvolatile semiconductor storage using giant magnetoresistance (GMR) memory bits has the potential for revolutionizing both high-density and high-speed memory applications with devices exhibiting unlimited write endurance and very low write energy. This paper presents the first universal circuit ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on magnetics 2000-07, Vol.36 (4), p.2062-2072
Hauptverfasser: Das, B., Black, W.C., Pohm, A.V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2072
container_issue 4
container_start_page 2062
container_title IEEE transactions on magnetics
container_volume 36
creator Das, B.
Black, W.C.
Pohm, A.V.
description Nonvolatile semiconductor storage using giant magnetoresistance (GMR) memory bits has the potential for revolutionizing both high-density and high-speed memory applications with devices exhibiting unlimited write endurance and very low write energy. This paper presents the first universal circuit macromodel for GMR memory bits. The macromodel is realized as a four-terminal subcircuit that emulates GMR bit behavior over a wide range of sense and word-line currents. It realistically models the nonlinear and hysteretic behavior of GMR memory bits, their transient thermal behavior, and the sense-current dependency of their write thresholds. The model is flexible and relatively simple: Ranges of the write/read currents and bit resistance values are incorporated as parameterized variables, and no semiconductor devices are used within the model.
doi_str_mv 10.1109/20.875339
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_800958</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>875339</ieee_id><sourcerecordid>28988394</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-68d81dcd7115ef8d893f83b972945546801f9b78ea730d14fa31c55499b897933</originalsourceid><addsrcrecordid>eNqN0c9LwzAUB_AgCs7pwaunoqB46MxrfjTvKGXqYKCgO5e0TUdHf8ykE_bfm9Gh4EE9hZf3yZfwHiHnQCcAFO8iOlGxYAwPyAiQQ0ipxEMyohRUiFzyY3Li3MqXXAAdkWTRVh_GOl0HT68vs2QaNDq3XdMVpg7KzgbLSre9v1y2pu-scZXrdZuboDFNZ7dBVvXulByVunbmbH-OyeJh-pY8hfPnx1lyPw9zHsk-lKpQUORFDCBM6QtkpWIZxhFyIbhUFErMYmV0zGgBvNQMct9AzBTGyNiY3Ay5a9u9b4zr06Zyualr3Zpu41IELiNEFXt5_auMFCrFkP8DCiq5_-mfMJaCcwQPL3_AVbexrZ9LqpQApEzu0m4H5EftnDVlurZVo-02BZru9phGNB326O3VPlC7XNel9eOv3NcDRSkK5dXFoCpjzHdziPgEnEShSw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>885190369</pqid></control><display><type>article</type><title>Universal HSPICE macromodel for giant magnetoresistance memory bits</title><source>IEEE Electronic Library (IEL)</source><creator>Das, B. ; Black, W.C. ; Pohm, A.V.</creator><creatorcontrib>Das, B. ; Black, W.C. ; Pohm, A.V.</creatorcontrib><description>Nonvolatile semiconductor storage using giant magnetoresistance (GMR) memory bits has the potential for revolutionizing both high-density and high-speed memory applications with devices exhibiting unlimited write endurance and very low write energy. This paper presents the first universal circuit macromodel for GMR memory bits. The macromodel is realized as a four-terminal subcircuit that emulates GMR bit behavior over a wide range of sense and word-line currents. It realistically models the nonlinear and hysteretic behavior of GMR memory bits, their transient thermal behavior, and the sense-current dependency of their write thresholds. The model is flexible and relatively simple: Ranges of the write/read currents and bit resistance values are incorporated as parameterized variables, and no semiconductor devices are used within the model.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/20.875339</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Antiferromagnetic materials ; Applied sciences ; Circuits ; Decoding ; Electronics ; Endurance ; Energy use ; Exact sciences and technology ; Giant magnetoresistance ; High speed ; Hysteresis ; Magnetic device characterization, design, and modeling ; Magnetic devices ; Magnetic fields ; Magnetic materials ; Magnetic separation ; Magnetic switching ; Magnetism ; Material storage ; Mathematical models ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Semiconductor memory ; Semiconductors ; Switches</subject><ispartof>IEEE transactions on magnetics, 2000-07, Vol.36 (4), p.2062-2072</ispartof><rights>2001 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2000</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-68d81dcd7115ef8d893f83b972945546801f9b78ea730d14fa31c55499b897933</citedby><cites>FETCH-LOGICAL-c426t-68d81dcd7115ef8d893f83b972945546801f9b78ea730d14fa31c55499b897933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/875339$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/875339$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=800958$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Das, B.</creatorcontrib><creatorcontrib>Black, W.C.</creatorcontrib><creatorcontrib>Pohm, A.V.</creatorcontrib><title>Universal HSPICE macromodel for giant magnetoresistance memory bits</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>Nonvolatile semiconductor storage using giant magnetoresistance (GMR) memory bits has the potential for revolutionizing both high-density and high-speed memory applications with devices exhibiting unlimited write endurance and very low write energy. This paper presents the first universal circuit macromodel for GMR memory bits. The macromodel is realized as a four-terminal subcircuit that emulates GMR bit behavior over a wide range of sense and word-line currents. It realistically models the nonlinear and hysteretic behavior of GMR memory bits, their transient thermal behavior, and the sense-current dependency of their write thresholds. The model is flexible and relatively simple: Ranges of the write/read currents and bit resistance values are incorporated as parameterized variables, and no semiconductor devices are used within the model.</description><subject>Antiferromagnetic materials</subject><subject>Applied sciences</subject><subject>Circuits</subject><subject>Decoding</subject><subject>Electronics</subject><subject>Endurance</subject><subject>Energy use</subject><subject>Exact sciences and technology</subject><subject>Giant magnetoresistance</subject><subject>High speed</subject><subject>Hysteresis</subject><subject>Magnetic device characterization, design, and modeling</subject><subject>Magnetic devices</subject><subject>Magnetic fields</subject><subject>Magnetic materials</subject><subject>Magnetic separation</subject><subject>Magnetic switching</subject><subject>Magnetism</subject><subject>Material storage</subject><subject>Mathematical models</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Semiconductor memory</subject><subject>Semiconductors</subject><subject>Switches</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqN0c9LwzAUB_AgCs7pwaunoqB46MxrfjTvKGXqYKCgO5e0TUdHf8ykE_bfm9Gh4EE9hZf3yZfwHiHnQCcAFO8iOlGxYAwPyAiQQ0ipxEMyohRUiFzyY3Li3MqXXAAdkWTRVh_GOl0HT68vs2QaNDq3XdMVpg7KzgbLSre9v1y2pu-scZXrdZuboDFNZ7dBVvXulByVunbmbH-OyeJh-pY8hfPnx1lyPw9zHsk-lKpQUORFDCBM6QtkpWIZxhFyIbhUFErMYmV0zGgBvNQMct9AzBTGyNiY3Ay5a9u9b4zr06Zyualr3Zpu41IELiNEFXt5_auMFCrFkP8DCiq5_-mfMJaCcwQPL3_AVbexrZ9LqpQApEzu0m4H5EftnDVlurZVo-02BZru9phGNB326O3VPlC7XNel9eOv3NcDRSkK5dXFoCpjzHdziPgEnEShSw</recordid><startdate>20000701</startdate><enddate>20000701</enddate><creator>Das, B.</creator><creator>Black, W.C.</creator><creator>Pohm, A.V.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7SC</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20000701</creationdate><title>Universal HSPICE macromodel for giant magnetoresistance memory bits</title><author>Das, B. ; Black, W.C. ; Pohm, A.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-68d81dcd7115ef8d893f83b972945546801f9b78ea730d14fa31c55499b897933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Antiferromagnetic materials</topic><topic>Applied sciences</topic><topic>Circuits</topic><topic>Decoding</topic><topic>Electronics</topic><topic>Endurance</topic><topic>Energy use</topic><topic>Exact sciences and technology</topic><topic>Giant magnetoresistance</topic><topic>High speed</topic><topic>Hysteresis</topic><topic>Magnetic device characterization, design, and modeling</topic><topic>Magnetic devices</topic><topic>Magnetic fields</topic><topic>Magnetic materials</topic><topic>Magnetic separation</topic><topic>Magnetic switching</topic><topic>Magnetism</topic><topic>Material storage</topic><topic>Mathematical models</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Semiconductor memory</topic><topic>Semiconductors</topic><topic>Switches</topic><toplevel>online_resources</toplevel><creatorcontrib>Das, B.</creatorcontrib><creatorcontrib>Black, W.C.</creatorcontrib><creatorcontrib>Pohm, A.V.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Das, B.</au><au>Black, W.C.</au><au>Pohm, A.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Universal HSPICE macromodel for giant magnetoresistance memory bits</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2000-07-01</date><risdate>2000</risdate><volume>36</volume><issue>4</issue><spage>2062</spage><epage>2072</epage><pages>2062-2072</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>Nonvolatile semiconductor storage using giant magnetoresistance (GMR) memory bits has the potential for revolutionizing both high-density and high-speed memory applications with devices exhibiting unlimited write endurance and very low write energy. This paper presents the first universal circuit macromodel for GMR memory bits. The macromodel is realized as a four-terminal subcircuit that emulates GMR bit behavior over a wide range of sense and word-line currents. It realistically models the nonlinear and hysteretic behavior of GMR memory bits, their transient thermal behavior, and the sense-current dependency of their write thresholds. The model is flexible and relatively simple: Ranges of the write/read currents and bit resistance values are incorporated as parameterized variables, and no semiconductor devices are used within the model.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/20.875339</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9464
ispartof IEEE transactions on magnetics, 2000-07, Vol.36 (4), p.2062-2072
issn 0018-9464
1941-0069
language eng
recordid cdi_pascalfrancis_primary_800958
source IEEE Electronic Library (IEL)
subjects Antiferromagnetic materials
Applied sciences
Circuits
Decoding
Electronics
Endurance
Energy use
Exact sciences and technology
Giant magnetoresistance
High speed
Hysteresis
Magnetic device characterization, design, and modeling
Magnetic devices
Magnetic fields
Magnetic materials
Magnetic separation
Magnetic switching
Magnetism
Material storage
Mathematical models
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Semiconductor memory
Semiconductors
Switches
title Universal HSPICE macromodel for giant magnetoresistance memory bits
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T12%3A07%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Universal%20HSPICE%20macromodel%20for%20giant%20magnetoresistance%20memory%20bits&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Das,%20B.&rft.date=2000-07-01&rft.volume=36&rft.issue=4&rft.spage=2062&rft.epage=2072&rft.pages=2062-2072&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/20.875339&rft_dat=%3Cproquest_RIE%3E28988394%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=885190369&rft_id=info:pmid/&rft_ieee_id=875339&rfr_iscdi=true