Dielectric relaxation in barrier coatings: A square root of time process

Seventeen different commercially available barrier coatings were investigated using relaxation voltammetry (RV). From the analysis of the potential transients over a wide relaxation range, it is concluded that the whole relaxation procedure can be described by the superposition of three elementary p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Progress in organic coatings 2000-08, Vol.39 (1), p.49-60
1. Verfasser: Strunz, Werner
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 60
container_issue 1
container_start_page 49
container_title Progress in organic coatings
container_volume 39
creator Strunz, Werner
description Seventeen different commercially available barrier coatings were investigated using relaxation voltammetry (RV). From the analysis of the potential transients over a wide relaxation range, it is concluded that the whole relaxation procedure can be described by the superposition of three elementary processes: a charge transfer, a dielectric relaxation and a diffusion process. The detailed analysis of the mathematical properties of the dielectric relaxation contribution leads to a Williams–Watts like transfer function: φ( t)=2 exp[−( λt) β ]−exp[−2( λt) β ], where φ( t) is the normalised transient decay for pure dielectric relaxation, λ a macroscopic (reciprocal) time constant and β=0.5. A ‘two-step’ continuous time random walk mechanism is proposed for the dielectric relaxation process. Furthermore, it is shown that for the coatings under investigation an ‘ideal behaviour’ is more the rule than the exception.
doi_str_mv 10.1016/S0300-9440(00)00099-0
format Article
fullrecord <record><control><sourceid>elsevier_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_796531</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0300944000000990</els_id><sourcerecordid>S0300944000000990</sourcerecordid><originalsourceid>FETCH-LOGICAL-e237t-f5296b7a287e6cd0bd7a80c973ebc5a6d3b3155342a419c907d1aef159dcc0103</originalsourceid><addsrcrecordid>eNo9kE1LxDAQhoMouK7-BCHgRQ_VSdM2Gy-yrB8rLHhQwVuYplOJdJuaVNF_b9YVYWBgeHiZ92HsWMC5AFFdPIIEyHRRwCnAGQBoncEOm4iZkpmU4mWXTf6RfXYQ41uCKin1hC2vHXVkx-AsD9ThF47O99z1vMYQHAVufTr1r_GSz3l8_8BAPHg_ct_y0a2JD8FbivGQ7bXYRTr621P2fHvztFhmq4e7-8V8lVEu1Zi1Za6rWmE-U1TZBupG4QysVpJqW2LVyFqKspRFjoXQVoNqBFIrSt1YCwLklJ1scweMFrs2YG9dNENwawzfRumqlCJRV1uK0iufqYaJ1lFvqXEhtTWNd0aA2egzv_rMxo2BzSR9BuQPD0djpQ</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dielectric relaxation in barrier coatings: A square root of time process</title><source>Elsevier ScienceDirect Journals</source><creator>Strunz, Werner</creator><creatorcontrib>Strunz, Werner</creatorcontrib><description>Seventeen different commercially available barrier coatings were investigated using relaxation voltammetry (RV). From the analysis of the potential transients over a wide relaxation range, it is concluded that the whole relaxation procedure can be described by the superposition of three elementary processes: a charge transfer, a dielectric relaxation and a diffusion process. The detailed analysis of the mathematical properties of the dielectric relaxation contribution leads to a Williams–Watts like transfer function: φ( t)=2 exp[−( λt) β ]−exp[−2( λt) β ], where φ( t) is the normalised transient decay for pure dielectric relaxation, λ a macroscopic (reciprocal) time constant and β=0.5. A ‘two-step’ continuous time random walk mechanism is proposed for the dielectric relaxation process. Furthermore, it is shown that for the coatings under investigation an ‘ideal behaviour’ is more the rule than the exception.</description><identifier>ISSN: 0300-9440</identifier><identifier>EISSN: 1873-331X</identifier><identifier>DOI: 10.1016/S0300-9440(00)00099-0</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Applied sciences ; Coatings. Paints, varnishes and inks ; Continuous time random walk ; Corrosion ; Corrosion protection ; Dielectric relaxation ; Electrochemical impedance spectroscopy ; Exact sciences and technology ; Film formation and curing, properties, testing ; Organic coatings ; Polymer industry, paints, wood ; Relaxation voltammetry ; Williams–Watts function</subject><ispartof>Progress in organic coatings, 2000-08, Vol.39 (1), p.49-60</ispartof><rights>2000 Elsevier Science S.A.</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0300944000000990$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,23909,23910,25118,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=796531$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Strunz, Werner</creatorcontrib><title>Dielectric relaxation in barrier coatings: A square root of time process</title><title>Progress in organic coatings</title><description>Seventeen different commercially available barrier coatings were investigated using relaxation voltammetry (RV). From the analysis of the potential transients over a wide relaxation range, it is concluded that the whole relaxation procedure can be described by the superposition of three elementary processes: a charge transfer, a dielectric relaxation and a diffusion process. The detailed analysis of the mathematical properties of the dielectric relaxation contribution leads to a Williams–Watts like transfer function: φ( t)=2 exp[−( λt) β ]−exp[−2( λt) β ], where φ( t) is the normalised transient decay for pure dielectric relaxation, λ a macroscopic (reciprocal) time constant and β=0.5. A ‘two-step’ continuous time random walk mechanism is proposed for the dielectric relaxation process. Furthermore, it is shown that for the coatings under investigation an ‘ideal behaviour’ is more the rule than the exception.</description><subject>Applied sciences</subject><subject>Coatings. Paints, varnishes and inks</subject><subject>Continuous time random walk</subject><subject>Corrosion</subject><subject>Corrosion protection</subject><subject>Dielectric relaxation</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Exact sciences and technology</subject><subject>Film formation and curing, properties, testing</subject><subject>Organic coatings</subject><subject>Polymer industry, paints, wood</subject><subject>Relaxation voltammetry</subject><subject>Williams–Watts function</subject><issn>0300-9440</issn><issn>1873-331X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LxDAQhoMouK7-BCHgRQ_VSdM2Gy-yrB8rLHhQwVuYplOJdJuaVNF_b9YVYWBgeHiZ92HsWMC5AFFdPIIEyHRRwCnAGQBoncEOm4iZkpmU4mWXTf6RfXYQ41uCKin1hC2vHXVkx-AsD9ThF47O99z1vMYQHAVufTr1r_GSz3l8_8BAPHg_ct_y0a2JD8FbivGQ7bXYRTr621P2fHvztFhmq4e7-8V8lVEu1Zi1Za6rWmE-U1TZBupG4QysVpJqW2LVyFqKspRFjoXQVoNqBFIrSt1YCwLklJ1scweMFrs2YG9dNENwawzfRumqlCJRV1uK0iufqYaJ1lFvqXEhtTWNd0aA2egzv_rMxo2BzSR9BuQPD0djpQ</recordid><startdate>20000801</startdate><enddate>20000801</enddate><creator>Strunz, Werner</creator><general>Elsevier B.V</general><general>Elsevier Sequoia</general><scope>IQODW</scope></search><sort><creationdate>20000801</creationdate><title>Dielectric relaxation in barrier coatings: A square root of time process</title><author>Strunz, Werner</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e237t-f5296b7a287e6cd0bd7a80c973ebc5a6d3b3155342a419c907d1aef159dcc0103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Applied sciences</topic><topic>Coatings. Paints, varnishes and inks</topic><topic>Continuous time random walk</topic><topic>Corrosion</topic><topic>Corrosion protection</topic><topic>Dielectric relaxation</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Exact sciences and technology</topic><topic>Film formation and curing, properties, testing</topic><topic>Organic coatings</topic><topic>Polymer industry, paints, wood</topic><topic>Relaxation voltammetry</topic><topic>Williams–Watts function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Strunz, Werner</creatorcontrib><collection>Pascal-Francis</collection><jtitle>Progress in organic coatings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Strunz, Werner</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dielectric relaxation in barrier coatings: A square root of time process</atitle><jtitle>Progress in organic coatings</jtitle><date>2000-08-01</date><risdate>2000</risdate><volume>39</volume><issue>1</issue><spage>49</spage><epage>60</epage><pages>49-60</pages><issn>0300-9440</issn><eissn>1873-331X</eissn><abstract>Seventeen different commercially available barrier coatings were investigated using relaxation voltammetry (RV). From the analysis of the potential transients over a wide relaxation range, it is concluded that the whole relaxation procedure can be described by the superposition of three elementary processes: a charge transfer, a dielectric relaxation and a diffusion process. The detailed analysis of the mathematical properties of the dielectric relaxation contribution leads to a Williams–Watts like transfer function: φ( t)=2 exp[−( λt) β ]−exp[−2( λt) β ], where φ( t) is the normalised transient decay for pure dielectric relaxation, λ a macroscopic (reciprocal) time constant and β=0.5. A ‘two-step’ continuous time random walk mechanism is proposed for the dielectric relaxation process. Furthermore, it is shown that for the coatings under investigation an ‘ideal behaviour’ is more the rule than the exception.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/S0300-9440(00)00099-0</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0300-9440
ispartof Progress in organic coatings, 2000-08, Vol.39 (1), p.49-60
issn 0300-9440
1873-331X
language eng
recordid cdi_pascalfrancis_primary_796531
source Elsevier ScienceDirect Journals
subjects Applied sciences
Coatings. Paints, varnishes and inks
Continuous time random walk
Corrosion
Corrosion protection
Dielectric relaxation
Electrochemical impedance spectroscopy
Exact sciences and technology
Film formation and curing, properties, testing
Organic coatings
Polymer industry, paints, wood
Relaxation voltammetry
Williams–Watts function
title Dielectric relaxation in barrier coatings: A square root of time process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T13%3A14%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dielectric%20relaxation%20in%20barrier%20coatings:%20A%20square%20root%20of%20time%20process&rft.jtitle=Progress%20in%20organic%20coatings&rft.au=Strunz,%20Werner&rft.date=2000-08-01&rft.volume=39&rft.issue=1&rft.spage=49&rft.epage=60&rft.pages=49-60&rft.issn=0300-9440&rft.eissn=1873-331X&rft_id=info:doi/10.1016/S0300-9440(00)00099-0&rft_dat=%3Celsevier_pasca%3ES0300944000000990%3C/elsevier_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0300944000000990&rfr_iscdi=true