Dielectric relaxation in barrier coatings: A square root of time process
Seventeen different commercially available barrier coatings were investigated using relaxation voltammetry (RV). From the analysis of the potential transients over a wide relaxation range, it is concluded that the whole relaxation procedure can be described by the superposition of three elementary p...
Gespeichert in:
Veröffentlicht in: | Progress in organic coatings 2000-08, Vol.39 (1), p.49-60 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 60 |
---|---|
container_issue | 1 |
container_start_page | 49 |
container_title | Progress in organic coatings |
container_volume | 39 |
creator | Strunz, Werner |
description | Seventeen different commercially available barrier coatings were investigated using relaxation voltammetry (RV). From the analysis of the potential transients over a wide relaxation range, it is concluded that the whole relaxation procedure can be described by the superposition of three elementary processes: a charge transfer, a dielectric relaxation and a diffusion process. The detailed analysis of the mathematical properties of the dielectric relaxation contribution leads to a Williams–Watts like transfer function:
φ(
t)=2
exp[−(
λt)
β
]−exp[−2(
λt)
β
], where
φ(
t) is the normalised transient decay for pure dielectric relaxation,
λ a macroscopic (reciprocal) time constant and
β=0.5. A ‘two-step’ continuous time random walk mechanism is proposed for the dielectric relaxation process. Furthermore, it is shown that for the coatings under investigation an ‘ideal behaviour’ is more the rule than the exception. |
doi_str_mv | 10.1016/S0300-9440(00)00099-0 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_796531</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0300944000000990</els_id><sourcerecordid>S0300944000000990</sourcerecordid><originalsourceid>FETCH-LOGICAL-e237t-f5296b7a287e6cd0bd7a80c973ebc5a6d3b3155342a419c907d1aef159dcc0103</originalsourceid><addsrcrecordid>eNo9kE1LxDAQhoMouK7-BCHgRQ_VSdM2Gy-yrB8rLHhQwVuYplOJdJuaVNF_b9YVYWBgeHiZ92HsWMC5AFFdPIIEyHRRwCnAGQBoncEOm4iZkpmU4mWXTf6RfXYQ41uCKin1hC2vHXVkx-AsD9ThF47O99z1vMYQHAVufTr1r_GSz3l8_8BAPHg_ct_y0a2JD8FbivGQ7bXYRTr621P2fHvztFhmq4e7-8V8lVEu1Zi1Za6rWmE-U1TZBupG4QysVpJqW2LVyFqKspRFjoXQVoNqBFIrSt1YCwLklJ1scweMFrs2YG9dNENwawzfRumqlCJRV1uK0iufqYaJ1lFvqXEhtTWNd0aA2egzv_rMxo2BzSR9BuQPD0djpQ</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dielectric relaxation in barrier coatings: A square root of time process</title><source>Elsevier ScienceDirect Journals</source><creator>Strunz, Werner</creator><creatorcontrib>Strunz, Werner</creatorcontrib><description>Seventeen different commercially available barrier coatings were investigated using relaxation voltammetry (RV). From the analysis of the potential transients over a wide relaxation range, it is concluded that the whole relaxation procedure can be described by the superposition of three elementary processes: a charge transfer, a dielectric relaxation and a diffusion process. The detailed analysis of the mathematical properties of the dielectric relaxation contribution leads to a Williams–Watts like transfer function:
φ(
t)=2
exp[−(
λt)
β
]−exp[−2(
λt)
β
], where
φ(
t) is the normalised transient decay for pure dielectric relaxation,
λ a macroscopic (reciprocal) time constant and
β=0.5. A ‘two-step’ continuous time random walk mechanism is proposed for the dielectric relaxation process. Furthermore, it is shown that for the coatings under investigation an ‘ideal behaviour’ is more the rule than the exception.</description><identifier>ISSN: 0300-9440</identifier><identifier>EISSN: 1873-331X</identifier><identifier>DOI: 10.1016/S0300-9440(00)00099-0</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Applied sciences ; Coatings. Paints, varnishes and inks ; Continuous time random walk ; Corrosion ; Corrosion protection ; Dielectric relaxation ; Electrochemical impedance spectroscopy ; Exact sciences and technology ; Film formation and curing, properties, testing ; Organic coatings ; Polymer industry, paints, wood ; Relaxation voltammetry ; Williams–Watts function</subject><ispartof>Progress in organic coatings, 2000-08, Vol.39 (1), p.49-60</ispartof><rights>2000 Elsevier Science S.A.</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0300944000000990$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,23909,23910,25118,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=796531$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Strunz, Werner</creatorcontrib><title>Dielectric relaxation in barrier coatings: A square root of time process</title><title>Progress in organic coatings</title><description>Seventeen different commercially available barrier coatings were investigated using relaxation voltammetry (RV). From the analysis of the potential transients over a wide relaxation range, it is concluded that the whole relaxation procedure can be described by the superposition of three elementary processes: a charge transfer, a dielectric relaxation and a diffusion process. The detailed analysis of the mathematical properties of the dielectric relaxation contribution leads to a Williams–Watts like transfer function:
φ(
t)=2
exp[−(
λt)
β
]−exp[−2(
λt)
β
], where
φ(
t) is the normalised transient decay for pure dielectric relaxation,
λ a macroscopic (reciprocal) time constant and
β=0.5. A ‘two-step’ continuous time random walk mechanism is proposed for the dielectric relaxation process. Furthermore, it is shown that for the coatings under investigation an ‘ideal behaviour’ is more the rule than the exception.</description><subject>Applied sciences</subject><subject>Coatings. Paints, varnishes and inks</subject><subject>Continuous time random walk</subject><subject>Corrosion</subject><subject>Corrosion protection</subject><subject>Dielectric relaxation</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Exact sciences and technology</subject><subject>Film formation and curing, properties, testing</subject><subject>Organic coatings</subject><subject>Polymer industry, paints, wood</subject><subject>Relaxation voltammetry</subject><subject>Williams–Watts function</subject><issn>0300-9440</issn><issn>1873-331X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LxDAQhoMouK7-BCHgRQ_VSdM2Gy-yrB8rLHhQwVuYplOJdJuaVNF_b9YVYWBgeHiZ92HsWMC5AFFdPIIEyHRRwCnAGQBoncEOm4iZkpmU4mWXTf6RfXYQ41uCKin1hC2vHXVkx-AsD9ThF47O99z1vMYQHAVufTr1r_GSz3l8_8BAPHg_ct_y0a2JD8FbivGQ7bXYRTr621P2fHvztFhmq4e7-8V8lVEu1Zi1Za6rWmE-U1TZBupG4QysVpJqW2LVyFqKspRFjoXQVoNqBFIrSt1YCwLklJ1scweMFrs2YG9dNENwawzfRumqlCJRV1uK0iufqYaJ1lFvqXEhtTWNd0aA2egzv_rMxo2BzSR9BuQPD0djpQ</recordid><startdate>20000801</startdate><enddate>20000801</enddate><creator>Strunz, Werner</creator><general>Elsevier B.V</general><general>Elsevier Sequoia</general><scope>IQODW</scope></search><sort><creationdate>20000801</creationdate><title>Dielectric relaxation in barrier coatings: A square root of time process</title><author>Strunz, Werner</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e237t-f5296b7a287e6cd0bd7a80c973ebc5a6d3b3155342a419c907d1aef159dcc0103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Applied sciences</topic><topic>Coatings. Paints, varnishes and inks</topic><topic>Continuous time random walk</topic><topic>Corrosion</topic><topic>Corrosion protection</topic><topic>Dielectric relaxation</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Exact sciences and technology</topic><topic>Film formation and curing, properties, testing</topic><topic>Organic coatings</topic><topic>Polymer industry, paints, wood</topic><topic>Relaxation voltammetry</topic><topic>Williams–Watts function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Strunz, Werner</creatorcontrib><collection>Pascal-Francis</collection><jtitle>Progress in organic coatings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Strunz, Werner</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dielectric relaxation in barrier coatings: A square root of time process</atitle><jtitle>Progress in organic coatings</jtitle><date>2000-08-01</date><risdate>2000</risdate><volume>39</volume><issue>1</issue><spage>49</spage><epage>60</epage><pages>49-60</pages><issn>0300-9440</issn><eissn>1873-331X</eissn><abstract>Seventeen different commercially available barrier coatings were investigated using relaxation voltammetry (RV). From the analysis of the potential transients over a wide relaxation range, it is concluded that the whole relaxation procedure can be described by the superposition of three elementary processes: a charge transfer, a dielectric relaxation and a diffusion process. The detailed analysis of the mathematical properties of the dielectric relaxation contribution leads to a Williams–Watts like transfer function:
φ(
t)=2
exp[−(
λt)
β
]−exp[−2(
λt)
β
], where
φ(
t) is the normalised transient decay for pure dielectric relaxation,
λ a macroscopic (reciprocal) time constant and
β=0.5. A ‘two-step’ continuous time random walk mechanism is proposed for the dielectric relaxation process. Furthermore, it is shown that for the coatings under investigation an ‘ideal behaviour’ is more the rule than the exception.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/S0300-9440(00)00099-0</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0300-9440 |
ispartof | Progress in organic coatings, 2000-08, Vol.39 (1), p.49-60 |
issn | 0300-9440 1873-331X |
language | eng |
recordid | cdi_pascalfrancis_primary_796531 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences Coatings. Paints, varnishes and inks Continuous time random walk Corrosion Corrosion protection Dielectric relaxation Electrochemical impedance spectroscopy Exact sciences and technology Film formation and curing, properties, testing Organic coatings Polymer industry, paints, wood Relaxation voltammetry Williams–Watts function |
title | Dielectric relaxation in barrier coatings: A square root of time process |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T13%3A14%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dielectric%20relaxation%20in%20barrier%20coatings:%20A%20square%20root%20of%20time%20process&rft.jtitle=Progress%20in%20organic%20coatings&rft.au=Strunz,%20Werner&rft.date=2000-08-01&rft.volume=39&rft.issue=1&rft.spage=49&rft.epage=60&rft.pages=49-60&rft.issn=0300-9440&rft.eissn=1873-331X&rft_id=info:doi/10.1016/S0300-9440(00)00099-0&rft_dat=%3Celsevier_pasca%3ES0300944000000990%3C/elsevier_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0300944000000990&rfr_iscdi=true |