A Kerr object embedded in a gravitational field

The exact expression for the Ernst potential for a Kerr object embedded in a gravitational field is derived using a formalism developed by Kramer and Neugebauer.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:J. Math. Phys. (N.Y.); (United States) 1986-04, Vol.27 (4), p.1056-1058
Hauptverfasser: Krori, K. D., Bhattacharjee, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1058
container_issue 4
container_start_page 1056
container_title J. Math. Phys. (N.Y.); (United States)
container_volume 27
creator Krori, K. D.
Bhattacharjee, R.
description The exact expression for the Ernst potential for a Kerr object embedded in a gravitational field is derived using a formalism developed by Kramer and Neugebauer.
doi_str_mv 10.1063/1.527147
format Article
fullrecord <record><control><sourceid>scitation_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_7951147</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jmp</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-7b55efa5a484bf4457ea09d3d4f39d2e3331e9c7883d1f3322f3ddc10556695b3</originalsourceid><addsrcrecordid>eNp90MtKAzEUBuAgCtYq-AhBXOhi2pxcJsmyiDcsuNF1yOSiKdOZkgwF397Wke50dTYf_znnR-gSyAxIzeYwE1QCl0doAkTpStZCHaMJIZRWlCt1is5KWRECoDifoPkCv4Sccd-sghtwWDfB--Bx6rDFH9lu02CH1He2xTGF1p-jk2jbEi5-5xS9P9y_3T1Vy9fH57vFsnJMwFDJRogQrbBc8SZyLmSwRHvmeWTa08AYg6CdVIp5iIxRGpn3DogQda1Fw6boaszty5BMcWkI7tP1Xbe70tSES8L1Dt2MyOW-lByi2eS0tvnLADH7NgyYsY0dvR7pxhZn25ht51I5eKkFjOx2ZPuNP4__F_mn3fb54MzGR_YNLVl3bQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Kerr object embedded in a gravitational field</title><source>AIP Digital Archive</source><creator>Krori, K. D. ; Bhattacharjee, R.</creator><creatorcontrib>Krori, K. D. ; Bhattacharjee, R. ; Mathematical Physics Forum, Cotton College, Gaunati-781001, India</creatorcontrib><description>The exact expression for the Ernst potential for a Kerr object embedded in a gravitational field is derived using a formalism developed by Kramer and Neugebauer.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.527147</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>657003 - Theoretical &amp; Mathematical Physics- Relativity &amp; Gravitation ; ANALYTICAL SOLUTION ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Classical general relativity ; EINSTEIN FIELD EQUATIONS ; EINSTEIN-MAXWELL EQUATIONS ; EQUATIONS ; Exact sciences and technology ; FIELD EQUATIONS ; FIELD THEORIES ; General relativity and gravitation ; GENERAL RELATIVITY THEORY ; GRAVITATION ; GRAVITATIONAL FIELDS ; KERR FIELD ; KERR METRIC ; METRICS ; Physics ; POTENTIALS</subject><ispartof>J. Math. Phys. (N.Y.); (United States), 1986-04, Vol.27 (4), p.1056-1058</ispartof><rights>American Institute of Physics</rights><rights>1987 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-7b55efa5a484bf4457ea09d3d4f39d2e3331e9c7883d1f3322f3ddc10556695b3</citedby><cites>FETCH-LOGICAL-c351t-7b55efa5a484bf4457ea09d3d4f39d2e3331e9c7883d1f3322f3ddc10556695b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.527147$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,881,1553,27901,27902,76132</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=7951147$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/6047049$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Krori, K. D.</creatorcontrib><creatorcontrib>Bhattacharjee, R.</creatorcontrib><creatorcontrib>Mathematical Physics Forum, Cotton College, Gaunati-781001, India</creatorcontrib><title>A Kerr object embedded in a gravitational field</title><title>J. Math. Phys. (N.Y.); (United States)</title><description>The exact expression for the Ernst potential for a Kerr object embedded in a gravitational field is derived using a formalism developed by Kramer and Neugebauer.</description><subject>657003 - Theoretical &amp; Mathematical Physics- Relativity &amp; Gravitation</subject><subject>ANALYTICAL SOLUTION</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Classical general relativity</subject><subject>EINSTEIN FIELD EQUATIONS</subject><subject>EINSTEIN-MAXWELL EQUATIONS</subject><subject>EQUATIONS</subject><subject>Exact sciences and technology</subject><subject>FIELD EQUATIONS</subject><subject>FIELD THEORIES</subject><subject>General relativity and gravitation</subject><subject>GENERAL RELATIVITY THEORY</subject><subject>GRAVITATION</subject><subject>GRAVITATIONAL FIELDS</subject><subject>KERR FIELD</subject><subject>KERR METRIC</subject><subject>METRICS</subject><subject>Physics</subject><subject>POTENTIALS</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1986</creationdate><recordtype>article</recordtype><recordid>eNp90MtKAzEUBuAgCtYq-AhBXOhi2pxcJsmyiDcsuNF1yOSiKdOZkgwF397Wke50dTYf_znnR-gSyAxIzeYwE1QCl0doAkTpStZCHaMJIZRWlCt1is5KWRECoDifoPkCv4Sccd-sghtwWDfB--Bx6rDFH9lu02CH1He2xTGF1p-jk2jbEi5-5xS9P9y_3T1Vy9fH57vFsnJMwFDJRogQrbBc8SZyLmSwRHvmeWTa08AYg6CdVIp5iIxRGpn3DogQda1Fw6boaszty5BMcWkI7tP1Xbe70tSES8L1Dt2MyOW-lByi2eS0tvnLADH7NgyYsY0dvR7pxhZn25ht51I5eKkFjOx2ZPuNP4__F_mn3fb54MzGR_YNLVl3bQ</recordid><startdate>19860401</startdate><enddate>19860401</enddate><creator>Krori, K. D.</creator><creator>Bhattacharjee, R.</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19860401</creationdate><title>A Kerr object embedded in a gravitational field</title><author>Krori, K. D. ; Bhattacharjee, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-7b55efa5a484bf4457ea09d3d4f39d2e3331e9c7883d1f3322f3ddc10556695b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1986</creationdate><topic>657003 - Theoretical &amp; Mathematical Physics- Relativity &amp; Gravitation</topic><topic>ANALYTICAL SOLUTION</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Classical general relativity</topic><topic>EINSTEIN FIELD EQUATIONS</topic><topic>EINSTEIN-MAXWELL EQUATIONS</topic><topic>EQUATIONS</topic><topic>Exact sciences and technology</topic><topic>FIELD EQUATIONS</topic><topic>FIELD THEORIES</topic><topic>General relativity and gravitation</topic><topic>GENERAL RELATIVITY THEORY</topic><topic>GRAVITATION</topic><topic>GRAVITATIONAL FIELDS</topic><topic>KERR FIELD</topic><topic>KERR METRIC</topic><topic>METRICS</topic><topic>Physics</topic><topic>POTENTIALS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krori, K. D.</creatorcontrib><creatorcontrib>Bhattacharjee, R.</creatorcontrib><creatorcontrib>Mathematical Physics Forum, Cotton College, Gaunati-781001, India</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>J. Math. Phys. (N.Y.); (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krori, K. D.</au><au>Bhattacharjee, R.</au><aucorp>Mathematical Physics Forum, Cotton College, Gaunati-781001, India</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Kerr object embedded in a gravitational field</atitle><jtitle>J. Math. Phys. (N.Y.); (United States)</jtitle><date>1986-04-01</date><risdate>1986</risdate><volume>27</volume><issue>4</issue><spage>1056</spage><epage>1058</epage><pages>1056-1058</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>The exact expression for the Ernst potential for a Kerr object embedded in a gravitational field is derived using a formalism developed by Kramer and Neugebauer.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.527147</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof J. Math. Phys. (N.Y.); (United States), 1986-04, Vol.27 (4), p.1056-1058
issn 0022-2488
1089-7658
language eng
recordid cdi_pascalfrancis_primary_7951147
source AIP Digital Archive
subjects 657003 - Theoretical & Mathematical Physics- Relativity & Gravitation
ANALYTICAL SOLUTION
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Classical general relativity
EINSTEIN FIELD EQUATIONS
EINSTEIN-MAXWELL EQUATIONS
EQUATIONS
Exact sciences and technology
FIELD EQUATIONS
FIELD THEORIES
General relativity and gravitation
GENERAL RELATIVITY THEORY
GRAVITATION
GRAVITATIONAL FIELDS
KERR FIELD
KERR METRIC
METRICS
Physics
POTENTIALS
title A Kerr object embedded in a gravitational field
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T12%3A00%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Kerr%20object%20embedded%20in%20a%20gravitational%20field&rft.jtitle=J.%20Math.%20Phys.%20(N.Y.);%20(United%20States)&rft.au=Krori,%20K.%20D.&rft.aucorp=Mathematical%20Physics%20Forum,%20Cotton%20College,%20Gaunati-781001,%20India&rft.date=1986-04-01&rft.volume=27&rft.issue=4&rft.spage=1056&rft.epage=1058&rft.pages=1056-1058&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.527147&rft_dat=%3Cscitation_pasca%3Ejmp%3C/scitation_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true