Determining the Zeros and Poles of Linear Circuit Networks Using Function Approximation

A numerical method for determining the significant singularities corresponding to the network function of a linear circuit is presented. This method is based upon function approximation of both the magnitude and phase of frequency response data. A linear network function of the form of a ratio of tw...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computer-aided design of integrated circuits and systems 1987-07, Vol.6 (4), p.678-690
Hauptverfasser: Bowman, R.J., Brewster, C.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 690
container_issue 4
container_start_page 678
container_title IEEE transactions on computer-aided design of integrated circuits and systems
container_volume 6
creator Bowman, R.J.
Brewster, C.C.
description A numerical method for determining the significant singularities corresponding to the network function of a linear circuit is presented. This method is based upon function approximation of both the magnitude and phase of frequency response data. A linear network function of the form of a ratio of two polynomials in the Laplacian variable s is assumed. The frequency response data are approximated using the nonlinear least-squares algorithm of Levenberg and Marquardt. The polynomials are then factored into roots and those singularities having a negligible effect are removed. ZAP, a computer program implementing this method, has proven to be a valuable design aid for performing pole-zero analysis in the design of linear integrated circuits.
doi_str_mv 10.1109/TCAD.1987.1270313
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_7845420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1270313</ieee_id><sourcerecordid>28226356</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-d973773369566beb4a7490135ff82f8f06c757a661757e67ff6573541104709c3</originalsourceid><addsrcrecordid>eNqFkE9LAzEQxYMoWKsfQLzkIN625n-yx1KtCkU9tAheljSdaHS7W5Nd1G_vLi169DQM_N68eQ-hU0pGlJL8cj4ZX41obvSIMk045XtoQHOuM0El3UcDwrTJCNHkEB2l9EYIFZLlA_R0BQ3EdahC9YKbV8DPEOuEbbXCj3UJCdcez0IFNuJJiK4NDb6H5rOO7wkvUi-atpVrQl3h8WYT66-wtv12jA68LROc7OYQLabX88ltNnu4uZuMZ5njkjXZKtdca85VLpVawlJYLXJCufTeMG88UU5LbZWi3QClvVdScym6zEKT3PEhutje7bw_WkhNsQ7JQVnaCuo2FcwwprhUHUi3oOvypQi-2MTu1_hdUFL0FRZ9hUVfYbGrsNOc747b5Gzpo61cSL9CbYQUjPyLCcON0R12tsUCAPy577x-ABMfhQY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28226356</pqid></control><display><type>article</type><title>Determining the Zeros and Poles of Linear Circuit Networks Using Function Approximation</title><source>IEEE Electronic Library (IEL)</source><creator>Bowman, R.J. ; Brewster, C.C.</creator><creatorcontrib>Bowman, R.J. ; Brewster, C.C.</creatorcontrib><description>A numerical method for determining the significant singularities corresponding to the network function of a linear circuit is presented. This method is based upon function approximation of both the magnitude and phase of frequency response data. A linear network function of the form of a ratio of two polynomials in the Laplacian variable s is assumed. The frequency response data are approximated using the nonlinear least-squares algorithm of Levenberg and Marquardt. The polynomials are then factored into roots and those singularities having a negligible effect are removed. ZAP, a computer program implementing this method, has proven to be a valuable design aid for performing pole-zero analysis in the design of linear integrated circuits.</description><identifier>ISSN: 0278-0070</identifier><identifier>EISSN: 1937-4151</identifier><identifier>DOI: 10.1109/TCAD.1987.1270313</identifier><identifier>CODEN: ITCSDI</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Analog integrated circuits ; Applied sciences ; Circuit analysis computing ; Electric, optical and optoelectronic circuits ; Electronics ; Exact sciences and technology ; Frequency response ; Function approximation ; Laplace equations ; Linear circuits ; Other techniques and industries ; Performance analysis ; Poles and zeros ; Polynomials ; Theoretical study. Circuits analysis and design ; Transfer functions</subject><ispartof>IEEE transactions on computer-aided design of integrated circuits and systems, 1987-07, Vol.6 (4), p.678-690</ispartof><rights>1988 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-d973773369566beb4a7490135ff82f8f06c757a661757e67ff6573541104709c3</citedby><cites>FETCH-LOGICAL-c352t-d973773369566beb4a7490135ff82f8f06c757a661757e67ff6573541104709c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1270313$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1270313$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=7483887$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=7845420$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bowman, R.J.</creatorcontrib><creatorcontrib>Brewster, C.C.</creatorcontrib><title>Determining the Zeros and Poles of Linear Circuit Networks Using Function Approximation</title><title>IEEE transactions on computer-aided design of integrated circuits and systems</title><addtitle>TCAD</addtitle><description>A numerical method for determining the significant singularities corresponding to the network function of a linear circuit is presented. This method is based upon function approximation of both the magnitude and phase of frequency response data. A linear network function of the form of a ratio of two polynomials in the Laplacian variable s is assumed. The frequency response data are approximated using the nonlinear least-squares algorithm of Levenberg and Marquardt. The polynomials are then factored into roots and those singularities having a negligible effect are removed. ZAP, a computer program implementing this method, has proven to be a valuable design aid for performing pole-zero analysis in the design of linear integrated circuits.</description><subject>Analog integrated circuits</subject><subject>Applied sciences</subject><subject>Circuit analysis computing</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Frequency response</subject><subject>Function approximation</subject><subject>Laplace equations</subject><subject>Linear circuits</subject><subject>Other techniques and industries</subject><subject>Performance analysis</subject><subject>Poles and zeros</subject><subject>Polynomials</subject><subject>Theoretical study. Circuits analysis and design</subject><subject>Transfer functions</subject><issn>0278-0070</issn><issn>1937-4151</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1987</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LAzEQxYMoWKsfQLzkIN625n-yx1KtCkU9tAheljSdaHS7W5Nd1G_vLi169DQM_N68eQ-hU0pGlJL8cj4ZX41obvSIMk045XtoQHOuM0El3UcDwrTJCNHkEB2l9EYIFZLlA_R0BQ3EdahC9YKbV8DPEOuEbbXCj3UJCdcez0IFNuJJiK4NDb6H5rOO7wkvUi-atpVrQl3h8WYT66-wtv12jA68LROc7OYQLabX88ltNnu4uZuMZ5njkjXZKtdca85VLpVawlJYLXJCufTeMG88UU5LbZWi3QClvVdScym6zEKT3PEhutje7bw_WkhNsQ7JQVnaCuo2FcwwprhUHUi3oOvypQi-2MTu1_hdUFL0FRZ9hUVfYbGrsNOc747b5Gzpo61cSL9CbYQUjPyLCcON0R12tsUCAPy577x-ABMfhQY</recordid><startdate>19870701</startdate><enddate>19870701</enddate><creator>Bowman, R.J.</creator><creator>Brewster, C.C.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19870701</creationdate><title>Determining the Zeros and Poles of Linear Circuit Networks Using Function Approximation</title><author>Bowman, R.J. ; Brewster, C.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-d973773369566beb4a7490135ff82f8f06c757a661757e67ff6573541104709c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1987</creationdate><topic>Analog integrated circuits</topic><topic>Applied sciences</topic><topic>Circuit analysis computing</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Frequency response</topic><topic>Function approximation</topic><topic>Laplace equations</topic><topic>Linear circuits</topic><topic>Other techniques and industries</topic><topic>Performance analysis</topic><topic>Poles and zeros</topic><topic>Polynomials</topic><topic>Theoretical study. Circuits analysis and design</topic><topic>Transfer functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bowman, R.J.</creatorcontrib><creatorcontrib>Brewster, C.C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bowman, R.J.</au><au>Brewster, C.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determining the Zeros and Poles of Linear Circuit Networks Using Function Approximation</atitle><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle><stitle>TCAD</stitle><date>1987-07-01</date><risdate>1987</risdate><volume>6</volume><issue>4</issue><spage>678</spage><epage>690</epage><pages>678-690</pages><issn>0278-0070</issn><eissn>1937-4151</eissn><coden>ITCSDI</coden><abstract>A numerical method for determining the significant singularities corresponding to the network function of a linear circuit is presented. This method is based upon function approximation of both the magnitude and phase of frequency response data. A linear network function of the form of a ratio of two polynomials in the Laplacian variable s is assumed. The frequency response data are approximated using the nonlinear least-squares algorithm of Levenberg and Marquardt. The polynomials are then factored into roots and those singularities having a negligible effect are removed. ZAP, a computer program implementing this method, has proven to be a valuable design aid for performing pole-zero analysis in the design of linear integrated circuits.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TCAD.1987.1270313</doi><tpages>13</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0070
ispartof IEEE transactions on computer-aided design of integrated circuits and systems, 1987-07, Vol.6 (4), p.678-690
issn 0278-0070
1937-4151
language eng
recordid cdi_pascalfrancis_primary_7845420
source IEEE Electronic Library (IEL)
subjects Analog integrated circuits
Applied sciences
Circuit analysis computing
Electric, optical and optoelectronic circuits
Electronics
Exact sciences and technology
Frequency response
Function approximation
Laplace equations
Linear circuits
Other techniques and industries
Performance analysis
Poles and zeros
Polynomials
Theoretical study. Circuits analysis and design
Transfer functions
title Determining the Zeros and Poles of Linear Circuit Networks Using Function Approximation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T21%3A32%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determining%20the%20Zeros%20and%20Poles%20of%20Linear%20Circuit%20Networks%20Using%20Function%20Approximation&rft.jtitle=IEEE%20transactions%20on%20computer-aided%20design%20of%20integrated%20circuits%20and%20systems&rft.au=Bowman,%20R.J.&rft.date=1987-07-01&rft.volume=6&rft.issue=4&rft.spage=678&rft.epage=690&rft.pages=678-690&rft.issn=0278-0070&rft.eissn=1937-4151&rft.coden=ITCSDI&rft_id=info:doi/10.1109/TCAD.1987.1270313&rft_dat=%3Cproquest_RIE%3E28226356%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28226356&rft_id=info:pmid/&rft_ieee_id=1270313&rfr_iscdi=true