BUBBLE BREAKUP AND COALESCENCE IN TURBULENT GAS-LIQUID DISPERSIONS
Theoretical models are proposed to describe bubble breakup and coalescence in a turbulent gas-liquid dispersion. The first model, which is mainly based on probablistic theory, gives reasonable prediction of bubble breakage frequency in terms of the liquid density, interfacial tension, bubble diamete...
Gespeichert in:
Veröffentlicht in: | Chemical engineering communications 1987-01, Vol.59 (1-6), p.65-84 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 84 |
---|---|
container_issue | 1-6 |
container_start_page | 65 |
container_title | Chemical engineering communications |
container_volume | 59 |
creator | LEE, CHUNG-HUR ERICKSON, L.E. GLASGOW, L.A. |
description | Theoretical models are proposed to describe bubble breakup and coalescence in a turbulent gas-liquid dispersion. The first model, which is mainly based on probablistic theory, gives reasonable prediction of bubble breakage frequency in terms of the liquid density, interfacial tension, bubble diameter, and the turbulent energy dissipation rate. The second model predicts the binary bubble coalescence frequency as a function of the liquid viscosity, interfacial tension, bubble diameter, turbulent energy dissipation rate, and the surface immobility parameter. Favorable agreement between the breakage and coalescence models and the experimental evidence indicates that these models could be used to predict dispersion properties such as bubble size distributions and interfacial areas. |
doi_str_mv | 10.1080/00986448708911986 |
format | Article |
fullrecord | <record><control><sourceid>pascalfrancis_infor</sourceid><recordid>TN_cdi_pascalfrancis_primary_7551914</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>7551914</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-2b9b7edb193dfc7784c5992ac6aada9b9520821fe1f47973eeb25fffb463fa813</originalsourceid><addsrcrecordid>eNp1kFFLwzAQx4MoOKcfwLc8-FrNNU2TgC9tF2exdHNdn0uaNjDp1pEOZN_ejqkv4tMd3O93d_wRugfyCESQJ0KkCINAcCIkwNhfoAmwkHrMJ3CJJqe5NwLsGt0MwwchQCnABMVxGceZwvFKRW_lEkf5DCeLKFNFovJE4TTH63IVl5nK13geFV6WvpfpDM_SYqlWRbrIi1t0ZXU3tHffdYrKF7VOXr1sMU-TKPMMDenB82tZ87apQdLGGs5FYJiUvjah1o2WtRw_FT7YFmzAJadtW_vMWlsHIbVaAJ0iOO81rh8G19pq7zZb7Y4VkOoUQvUnhNF5ODt7PRjdWad3ZjP8ipwxkBCM2PMZ2-xs77b6s3ddUx30sevdj0P_v_IF7RFoiw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>BUBBLE BREAKUP AND COALESCENCE IN TURBULENT GAS-LIQUID DISPERSIONS</title><source>Taylor & Francis Journals Complete</source><creator>LEE, CHUNG-HUR ; ERICKSON, L.E. ; GLASGOW, L.A.</creator><creatorcontrib>LEE, CHUNG-HUR ; ERICKSON, L.E. ; GLASGOW, L.A.</creatorcontrib><description>Theoretical models are proposed to describe bubble breakup and coalescence in a turbulent gas-liquid dispersion. The first model, which is mainly based on probablistic theory, gives reasonable prediction of bubble breakage frequency in terms of the liquid density, interfacial tension, bubble diameter, and the turbulent energy dissipation rate. The second model predicts the binary bubble coalescence frequency as a function of the liquid viscosity, interfacial tension, bubble diameter, turbulent energy dissipation rate, and the surface immobility parameter. Favorable agreement between the breakage and coalescence models and the experimental evidence indicates that these models could be used to predict dispersion properties such as bubble size distributions and interfacial areas.</description><identifier>ISSN: 0098-6445</identifier><identifier>EISSN: 1563-5201</identifier><identifier>DOI: 10.1080/00986448708911986</identifier><identifier>CODEN: CEGCAK</identifier><language>eng</language><publisher>Elmont, NY: Taylor & Francis Group</publisher><subject>Applied sciences ; Bubble breakup ; Bubble size distribution ; Chemical engineering ; Coalescence ; Exact sciences and technology ; Gas-liquid dispersion Modeling ; Hydrodynamics of contact apparatus ; Turbulence</subject><ispartof>Chemical engineering communications, 1987-01, Vol.59 (1-6), p.65-84</ispartof><rights>Copyright Taylor & Francis Group, LLC 1987</rights><rights>1988 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-2b9b7edb193dfc7784c5992ac6aada9b9520821fe1f47973eeb25fffb463fa813</citedby><cites>FETCH-LOGICAL-c363t-2b9b7edb193dfc7784c5992ac6aada9b9520821fe1f47973eeb25fffb463fa813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/00986448708911986$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/00986448708911986$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,59646,60435</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=7551914$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>LEE, CHUNG-HUR</creatorcontrib><creatorcontrib>ERICKSON, L.E.</creatorcontrib><creatorcontrib>GLASGOW, L.A.</creatorcontrib><title>BUBBLE BREAKUP AND COALESCENCE IN TURBULENT GAS-LIQUID DISPERSIONS</title><title>Chemical engineering communications</title><description>Theoretical models are proposed to describe bubble breakup and coalescence in a turbulent gas-liquid dispersion. The first model, which is mainly based on probablistic theory, gives reasonable prediction of bubble breakage frequency in terms of the liquid density, interfacial tension, bubble diameter, and the turbulent energy dissipation rate. The second model predicts the binary bubble coalescence frequency as a function of the liquid viscosity, interfacial tension, bubble diameter, turbulent energy dissipation rate, and the surface immobility parameter. Favorable agreement between the breakage and coalescence models and the experimental evidence indicates that these models could be used to predict dispersion properties such as bubble size distributions and interfacial areas.</description><subject>Applied sciences</subject><subject>Bubble breakup</subject><subject>Bubble size distribution</subject><subject>Chemical engineering</subject><subject>Coalescence</subject><subject>Exact sciences and technology</subject><subject>Gas-liquid dispersion Modeling</subject><subject>Hydrodynamics of contact apparatus</subject><subject>Turbulence</subject><issn>0098-6445</issn><issn>1563-5201</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1987</creationdate><recordtype>article</recordtype><recordid>eNp1kFFLwzAQx4MoOKcfwLc8-FrNNU2TgC9tF2exdHNdn0uaNjDp1pEOZN_ejqkv4tMd3O93d_wRugfyCESQJ0KkCINAcCIkwNhfoAmwkHrMJ3CJJqe5NwLsGt0MwwchQCnABMVxGceZwvFKRW_lEkf5DCeLKFNFovJE4TTH63IVl5nK13geFV6WvpfpDM_SYqlWRbrIi1t0ZXU3tHffdYrKF7VOXr1sMU-TKPMMDenB82tZ87apQdLGGs5FYJiUvjah1o2WtRw_FT7YFmzAJadtW_vMWlsHIbVaAJ0iOO81rh8G19pq7zZb7Y4VkOoUQvUnhNF5ODt7PRjdWad3ZjP8ipwxkBCM2PMZ2-xs77b6s3ddUx30sevdj0P_v_IF7RFoiw</recordid><startdate>19870101</startdate><enddate>19870101</enddate><creator>LEE, CHUNG-HUR</creator><creator>ERICKSON, L.E.</creator><creator>GLASGOW, L.A.</creator><general>Taylor & Francis Group</general><general>Taylor & Francis</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19870101</creationdate><title>BUBBLE BREAKUP AND COALESCENCE IN TURBULENT GAS-LIQUID DISPERSIONS</title><author>LEE, CHUNG-HUR ; ERICKSON, L.E. ; GLASGOW, L.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-2b9b7edb193dfc7784c5992ac6aada9b9520821fe1f47973eeb25fffb463fa813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1987</creationdate><topic>Applied sciences</topic><topic>Bubble breakup</topic><topic>Bubble size distribution</topic><topic>Chemical engineering</topic><topic>Coalescence</topic><topic>Exact sciences and technology</topic><topic>Gas-liquid dispersion Modeling</topic><topic>Hydrodynamics of contact apparatus</topic><topic>Turbulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LEE, CHUNG-HUR</creatorcontrib><creatorcontrib>ERICKSON, L.E.</creatorcontrib><creatorcontrib>GLASGOW, L.A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Chemical engineering communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LEE, CHUNG-HUR</au><au>ERICKSON, L.E.</au><au>GLASGOW, L.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BUBBLE BREAKUP AND COALESCENCE IN TURBULENT GAS-LIQUID DISPERSIONS</atitle><jtitle>Chemical engineering communications</jtitle><date>1987-01-01</date><risdate>1987</risdate><volume>59</volume><issue>1-6</issue><spage>65</spage><epage>84</epage><pages>65-84</pages><issn>0098-6445</issn><eissn>1563-5201</eissn><coden>CEGCAK</coden><abstract>Theoretical models are proposed to describe bubble breakup and coalescence in a turbulent gas-liquid dispersion. The first model, which is mainly based on probablistic theory, gives reasonable prediction of bubble breakage frequency in terms of the liquid density, interfacial tension, bubble diameter, and the turbulent energy dissipation rate. The second model predicts the binary bubble coalescence frequency as a function of the liquid viscosity, interfacial tension, bubble diameter, turbulent energy dissipation rate, and the surface immobility parameter. Favorable agreement between the breakage and coalescence models and the experimental evidence indicates that these models could be used to predict dispersion properties such as bubble size distributions and interfacial areas.</abstract><cop>Elmont, NY</cop><pub>Taylor & Francis Group</pub><doi>10.1080/00986448708911986</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0098-6445 |
ispartof | Chemical engineering communications, 1987-01, Vol.59 (1-6), p.65-84 |
issn | 0098-6445 1563-5201 |
language | eng |
recordid | cdi_pascalfrancis_primary_7551914 |
source | Taylor & Francis Journals Complete |
subjects | Applied sciences Bubble breakup Bubble size distribution Chemical engineering Coalescence Exact sciences and technology Gas-liquid dispersion Modeling Hydrodynamics of contact apparatus Turbulence |
title | BUBBLE BREAKUP AND COALESCENCE IN TURBULENT GAS-LIQUID DISPERSIONS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T22%3A08%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BUBBLE%20BREAKUP%20AND%20COALESCENCE%20IN%20TURBULENT%20GAS-LIQUID%20DISPERSIONS&rft.jtitle=Chemical%20engineering%20communications&rft.au=LEE,%20CHUNG-HUR&rft.date=1987-01-01&rft.volume=59&rft.issue=1-6&rft.spage=65&rft.epage=84&rft.pages=65-84&rft.issn=0098-6445&rft.eissn=1563-5201&rft.coden=CEGCAK&rft_id=info:doi/10.1080/00986448708911986&rft_dat=%3Cpascalfrancis_infor%3E7551914%3C/pascalfrancis_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |