Effects of neutron irradiation on Nd-Fe-B magnetic properties

Nd-Fe-B permanent magnets from two different manufacturers were irradiated in the Omega West reactor at Los Alamos National Laboratory, with fast neutrons at temperatures of 426 K (153 degrees C) and 350 K (77 degrees C) to fluences of 5.0*10/sup 16/ N/cm/sup 2/ and 6.1*10/sup 16/ N/cm/sup 2/, respe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE Trans. Magn.; (United States) 1988-05, Vol.24 (3), p.2016-2019
Hauptverfasser: Cost, J.R., Brown, R.D., Giorgi, A.L., Stanley, J.T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2019
container_issue 3
container_start_page 2016
container_title IEEE Trans. Magn.; (United States)
container_volume 24
creator Cost, J.R.
Brown, R.D.
Giorgi, A.L.
Stanley, J.T.
description Nd-Fe-B permanent magnets from two different manufacturers were irradiated in the Omega West reactor at Los Alamos National Laboratory, with fast neutrons at temperatures of 426 K (153 degrees C) and 350 K (77 degrees C) to fluences of 5.0*10/sup 16/ N/cm/sup 2/ and 6.1*10/sup 16/ N/cm/sup 2/, respectively. At intervals during the irradiation the samples were removed from the reactor and the remanence measured at room temperature. The initial loss of remanence for irradiation at 426 K was 10% for a fluence of 10/sup 15/ N/cm/sup 2/. At 350 K the initial loss rate was roughly half this value. The loss rates were nearly the same for samples from the two different manufacturers. These losses are due to the irradiation since the remanence does not decay with annealing at 426 K. Remagnetization after irradiation results in full recovery of the remanence and roughly a 20% increase in the coercivity. Evidence from this experiment suggests that the primary mechanism for loss of remanence is nucleation of reverse domains by the collision cascade and subsequent growth into the original domain.< >
doi_str_mv 10.1109/20.3393
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_7095334</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>3393</ieee_id><sourcerecordid>28747098</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-5b051cd677949b310f805a6b1836aee21dde194aa5a5313e97074bcb6b9fb3cb3</originalsourceid><addsrcrecordid>eNqNkM1LAzEQxYMoWKt49biI6Glrvja7OXjQ0qpQ9KLnkGQnGtnu1iQ9-N-b2tKzMDAzzI83j4fQOcETQrC8pXjCmGQHaEQkJyXGQh6iEcakKSUX_BidxPiVV14RPEJ3M-fAplgMruhhncLQFz4E3XqdfJ5zvbTlHMqHYqk_ekjeFqswrCAkD_EUHTndRTjb9TF6n8_epk_l4vXxeXq_KC2nPJWVwRWxrahryaVhBLsGV1oY0jChAShpW8hmta50xQgDWeOaG2uEkc4wa9gYXW51h5i8itYnsJ926PtsXQlKpWRNhq63UPb3vYaY1NJHC12nexjWUdGm5jWW_wGpkFTyDN5sQRuGGAM4tQp-qcOPIlhtwlYUq03YmbzaSepodeeC7q2Pezy_rRjbCF5sMQ8A--ufwi8Ia4Ot</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28269294</pqid></control><display><type>article</type><title>Effects of neutron irradiation on Nd-Fe-B magnetic properties</title><source>IEEE Electronic Library (IEL)</source><creator>Cost, J.R. ; Brown, R.D. ; Giorgi, A.L. ; Stanley, J.T.</creator><creatorcontrib>Cost, J.R. ; Brown, R.D. ; Giorgi, A.L. ; Stanley, J.T. ; Los Alamos National Labs., Los Alamos, NM (US)</creatorcontrib><description>Nd-Fe-B permanent magnets from two different manufacturers were irradiated in the Omega West reactor at Los Alamos National Laboratory, with fast neutrons at temperatures of 426 K (153 degrees C) and 350 K (77 degrees C) to fluences of 5.0*10/sup 16/ N/cm/sup 2/ and 6.1*10/sup 16/ N/cm/sup 2/, respectively. At intervals during the irradiation the samples were removed from the reactor and the remanence measured at room temperature. The initial loss of remanence for irradiation at 426 K was 10% for a fluence of 10/sup 15/ N/cm/sup 2/. At 350 K the initial loss rate was roughly half this value. The loss rates were nearly the same for samples from the two different manufacturers. These losses are due to the irradiation since the remanence does not decay with annealing at 426 K. Remagnetization after irradiation results in full recovery of the remanence and roughly a 20% increase in the coercivity. Evidence from this experiment suggests that the primary mechanism for loss of remanence is nucleation of reverse domains by the collision cascade and subsequent growth into the original domain.&lt; &gt;</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/20.3393</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>360106 - Metals &amp; Alloys- Radiation Effects ; ALLOY SYSTEMS ; ALLOYS ; Annealing ; BORON ALLOYS ; Coercive force ; COHERENT SCATTERING ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Cross-disciplinary physics: materials science; rheology ; DATA ; DIFFRACTION ; Domain effects, magnetization curves, and hysteresis ; Exact sciences and technology ; EXPERIMENTAL DATA ; Inductors ; INFORMATION ; IRON ALLOYS ; IRRADIATION ; Laboratories ; MAGNETIC PROPERTIES ; Magnetic properties and materials ; MAGNETS ; Manufacturing ; MATERIALS SCIENCE ; Metals, semimetals and alloys ; NEODYMIUM ALLOYS ; NEUTRON DIFFRACTION ; Neutrons ; NUMERICAL DATA ; Other topics in magnetic properties and materials ; PERMANENT MAGNETS ; PHYSICAL PROPERTIES ; PHYSICAL RADIATION EFFECTS ; Physics ; RADIATION EFFECTS ; RARE EARTH ALLOYS ; Remanence ; SCATTERING ; Specific materials ; Temperature measurement ; TERNARY ALLOY SYSTEMS</subject><ispartof>IEEE Trans. Magn.; (United States), 1988-05, Vol.24 (3), p.2016-2019</ispartof><rights>1989 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-5b051cd677949b310f805a6b1836aee21dde194aa5a5313e97074bcb6b9fb3cb3</citedby><cites>FETCH-LOGICAL-c424t-5b051cd677949b310f805a6b1836aee21dde194aa5a5313e97074bcb6b9fb3cb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/3393$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,886,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/3393$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=7095334$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/6229938$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Cost, J.R.</creatorcontrib><creatorcontrib>Brown, R.D.</creatorcontrib><creatorcontrib>Giorgi, A.L.</creatorcontrib><creatorcontrib>Stanley, J.T.</creatorcontrib><creatorcontrib>Los Alamos National Labs., Los Alamos, NM (US)</creatorcontrib><title>Effects of neutron irradiation on Nd-Fe-B magnetic properties</title><title>IEEE Trans. Magn.; (United States)</title><addtitle>TMAG</addtitle><description>Nd-Fe-B permanent magnets from two different manufacturers were irradiated in the Omega West reactor at Los Alamos National Laboratory, with fast neutrons at temperatures of 426 K (153 degrees C) and 350 K (77 degrees C) to fluences of 5.0*10/sup 16/ N/cm/sup 2/ and 6.1*10/sup 16/ N/cm/sup 2/, respectively. At intervals during the irradiation the samples were removed from the reactor and the remanence measured at room temperature. The initial loss of remanence for irradiation at 426 K was 10% for a fluence of 10/sup 15/ N/cm/sup 2/. At 350 K the initial loss rate was roughly half this value. The loss rates were nearly the same for samples from the two different manufacturers. These losses are due to the irradiation since the remanence does not decay with annealing at 426 K. Remagnetization after irradiation results in full recovery of the remanence and roughly a 20% increase in the coercivity. Evidence from this experiment suggests that the primary mechanism for loss of remanence is nucleation of reverse domains by the collision cascade and subsequent growth into the original domain.&lt; &gt;</description><subject>360106 - Metals &amp; Alloys- Radiation Effects</subject><subject>ALLOY SYSTEMS</subject><subject>ALLOYS</subject><subject>Annealing</subject><subject>BORON ALLOYS</subject><subject>Coercive force</subject><subject>COHERENT SCATTERING</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>DATA</subject><subject>DIFFRACTION</subject><subject>Domain effects, magnetization curves, and hysteresis</subject><subject>Exact sciences and technology</subject><subject>EXPERIMENTAL DATA</subject><subject>Inductors</subject><subject>INFORMATION</subject><subject>IRON ALLOYS</subject><subject>IRRADIATION</subject><subject>Laboratories</subject><subject>MAGNETIC PROPERTIES</subject><subject>Magnetic properties and materials</subject><subject>MAGNETS</subject><subject>Manufacturing</subject><subject>MATERIALS SCIENCE</subject><subject>Metals, semimetals and alloys</subject><subject>NEODYMIUM ALLOYS</subject><subject>NEUTRON DIFFRACTION</subject><subject>Neutrons</subject><subject>NUMERICAL DATA</subject><subject>Other topics in magnetic properties and materials</subject><subject>PERMANENT MAGNETS</subject><subject>PHYSICAL PROPERTIES</subject><subject>PHYSICAL RADIATION EFFECTS</subject><subject>Physics</subject><subject>RADIATION EFFECTS</subject><subject>RARE EARTH ALLOYS</subject><subject>Remanence</subject><subject>SCATTERING</subject><subject>Specific materials</subject><subject>Temperature measurement</subject><subject>TERNARY ALLOY SYSTEMS</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1988</creationdate><recordtype>article</recordtype><recordid>eNqNkM1LAzEQxYMoWKt49biI6Glrvja7OXjQ0qpQ9KLnkGQnGtnu1iQ9-N-b2tKzMDAzzI83j4fQOcETQrC8pXjCmGQHaEQkJyXGQh6iEcakKSUX_BidxPiVV14RPEJ3M-fAplgMruhhncLQFz4E3XqdfJ5zvbTlHMqHYqk_ekjeFqswrCAkD_EUHTndRTjb9TF6n8_epk_l4vXxeXq_KC2nPJWVwRWxrahryaVhBLsGV1oY0jChAShpW8hmta50xQgDWeOaG2uEkc4wa9gYXW51h5i8itYnsJ926PtsXQlKpWRNhq63UPb3vYaY1NJHC12nexjWUdGm5jWW_wGpkFTyDN5sQRuGGAM4tQp-qcOPIlhtwlYUq03YmbzaSepodeeC7q2Pezy_rRjbCF5sMQ8A--ufwi8Ia4Ot</recordid><startdate>19880501</startdate><enddate>19880501</enddate><creator>Cost, J.R.</creator><creator>Brown, R.D.</creator><creator>Giorgi, A.L.</creator><creator>Stanley, J.T.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>8BQ</scope><scope>JG9</scope><scope>OTOTI</scope></search><sort><creationdate>19880501</creationdate><title>Effects of neutron irradiation on Nd-Fe-B magnetic properties</title><author>Cost, J.R. ; Brown, R.D. ; Giorgi, A.L. ; Stanley, J.T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-5b051cd677949b310f805a6b1836aee21dde194aa5a5313e97074bcb6b9fb3cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1988</creationdate><topic>360106 - Metals &amp; Alloys- Radiation Effects</topic><topic>ALLOY SYSTEMS</topic><topic>ALLOYS</topic><topic>Annealing</topic><topic>BORON ALLOYS</topic><topic>Coercive force</topic><topic>COHERENT SCATTERING</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>DATA</topic><topic>DIFFRACTION</topic><topic>Domain effects, magnetization curves, and hysteresis</topic><topic>Exact sciences and technology</topic><topic>EXPERIMENTAL DATA</topic><topic>Inductors</topic><topic>INFORMATION</topic><topic>IRON ALLOYS</topic><topic>IRRADIATION</topic><topic>Laboratories</topic><topic>MAGNETIC PROPERTIES</topic><topic>Magnetic properties and materials</topic><topic>MAGNETS</topic><topic>Manufacturing</topic><topic>MATERIALS SCIENCE</topic><topic>Metals, semimetals and alloys</topic><topic>NEODYMIUM ALLOYS</topic><topic>NEUTRON DIFFRACTION</topic><topic>Neutrons</topic><topic>NUMERICAL DATA</topic><topic>Other topics in magnetic properties and materials</topic><topic>PERMANENT MAGNETS</topic><topic>PHYSICAL PROPERTIES</topic><topic>PHYSICAL RADIATION EFFECTS</topic><topic>Physics</topic><topic>RADIATION EFFECTS</topic><topic>RARE EARTH ALLOYS</topic><topic>Remanence</topic><topic>SCATTERING</topic><topic>Specific materials</topic><topic>Temperature measurement</topic><topic>TERNARY ALLOY SYSTEMS</topic><toplevel>online_resources</toplevel><creatorcontrib>Cost, J.R.</creatorcontrib><creatorcontrib>Brown, R.D.</creatorcontrib><creatorcontrib>Giorgi, A.L.</creatorcontrib><creatorcontrib>Stanley, J.T.</creatorcontrib><creatorcontrib>Los Alamos National Labs., Los Alamos, NM (US)</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>METADEX</collection><collection>Materials Research Database</collection><collection>OSTI.GOV</collection><jtitle>IEEE Trans. Magn.; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cost, J.R.</au><au>Brown, R.D.</au><au>Giorgi, A.L.</au><au>Stanley, J.T.</au><aucorp>Los Alamos National Labs., Los Alamos, NM (US)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of neutron irradiation on Nd-Fe-B magnetic properties</atitle><jtitle>IEEE Trans. Magn.; (United States)</jtitle><stitle>TMAG</stitle><date>1988-05-01</date><risdate>1988</risdate><volume>24</volume><issue>3</issue><spage>2016</spage><epage>2019</epage><pages>2016-2019</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>Nd-Fe-B permanent magnets from two different manufacturers were irradiated in the Omega West reactor at Los Alamos National Laboratory, with fast neutrons at temperatures of 426 K (153 degrees C) and 350 K (77 degrees C) to fluences of 5.0*10/sup 16/ N/cm/sup 2/ and 6.1*10/sup 16/ N/cm/sup 2/, respectively. At intervals during the irradiation the samples were removed from the reactor and the remanence measured at room temperature. The initial loss of remanence for irradiation at 426 K was 10% for a fluence of 10/sup 15/ N/cm/sup 2/. At 350 K the initial loss rate was roughly half this value. The loss rates were nearly the same for samples from the two different manufacturers. These losses are due to the irradiation since the remanence does not decay with annealing at 426 K. Remagnetization after irradiation results in full recovery of the remanence and roughly a 20% increase in the coercivity. Evidence from this experiment suggests that the primary mechanism for loss of remanence is nucleation of reverse domains by the collision cascade and subsequent growth into the original domain.&lt; &gt;</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/20.3393</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9464
ispartof IEEE Trans. Magn.; (United States), 1988-05, Vol.24 (3), p.2016-2019
issn 0018-9464
1941-0069
language eng
recordid cdi_pascalfrancis_primary_7095334
source IEEE Electronic Library (IEL)
subjects 360106 - Metals & Alloys- Radiation Effects
ALLOY SYSTEMS
ALLOYS
Annealing
BORON ALLOYS
Coercive force
COHERENT SCATTERING
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Cross-disciplinary physics: materials science
rheology
DATA
DIFFRACTION
Domain effects, magnetization curves, and hysteresis
Exact sciences and technology
EXPERIMENTAL DATA
Inductors
INFORMATION
IRON ALLOYS
IRRADIATION
Laboratories
MAGNETIC PROPERTIES
Magnetic properties and materials
MAGNETS
Manufacturing
MATERIALS SCIENCE
Metals, semimetals and alloys
NEODYMIUM ALLOYS
NEUTRON DIFFRACTION
Neutrons
NUMERICAL DATA
Other topics in magnetic properties and materials
PERMANENT MAGNETS
PHYSICAL PROPERTIES
PHYSICAL RADIATION EFFECTS
Physics
RADIATION EFFECTS
RARE EARTH ALLOYS
Remanence
SCATTERING
Specific materials
Temperature measurement
TERNARY ALLOY SYSTEMS
title Effects of neutron irradiation on Nd-Fe-B magnetic properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T18%3A06%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20neutron%20irradiation%20on%20Nd-Fe-B%20magnetic%20properties&rft.jtitle=IEEE%20Trans.%20Magn.;%20(United%20States)&rft.au=Cost,%20J.R.&rft.aucorp=Los%20Alamos%20National%20Labs.,%20Los%20Alamos,%20NM%20(US)&rft.date=1988-05-01&rft.volume=24&rft.issue=3&rft.spage=2016&rft.epage=2019&rft.pages=2016-2019&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/20.3393&rft_dat=%3Cproquest_RIE%3E28747098%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28269294&rft_id=info:pmid/&rft_ieee_id=3393&rfr_iscdi=true